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Inter-Rater Reliability: Chance-corrected Measures

Kai Bruchlos

Abstract

The assessment of the inter-rater reliability requires the reduction of the ob-
served agreement by chance agreement. There are several measures for this
purpose. We consider some measures for nominal variables and investigate
the mathematical characteristics of these measures on the basis of two math-
ematical models. Moreover we check if they are chance-corrected measures.
Furthermore we introduce qualitative features for measures and check them
on the measures. Finally we also give guidelines for the interpretation of the
values of a measure and consider chance agreement as random measurement
error.

Keywords: agreement for nominal categories, chance-corrected measure,
inter-rater agreement, inter-rater reliability, kappa statistic

MSC Class: 62H20; 62P10; 62P15; 62P25

1 Introduction

We consider a scientific investigation where observers (raters, judges) have
to classify objects (individuals, things) into categories. The prerequisite is
that the classification of the objects is independent of the selected observers.
The observers should be interchangeably (see Gwet 2014, p. 4) which means
the results are reproducible (see Cohen 1960, p. 37). Inter-rater reliability
is the degree of agreement among observers in such an investigation.There
are many measures to calculate the degree (see Banerjee et al. 1999). An
important property for a measure is “freedom from random measurement
error” (Schinka and Velicer 2003, p. 399).

There are several reasons for disagreement among observers. Theses rea-
sons could have been personal preferences, different interpretations of cat-
egories, uncertainty about the correct category or misunderstanding about
categorization (see Gwet 2014, p. 11, 29). Therefore the observed agreement
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(sample agreement) may be partially or completely random. We remove the
chance from the observed agreement with the objective to obtain the chance-
corrected agreement (see Gwet 2014, p. 15).

The experiment (survey) we are looking at has the following statistical
properties: 1. N units (objects), 2. nominal variable with k > 1 values
(categories), 3. two observers operating independently.

The paper is organized as follows. Firstly section 2 presents the basic
characteristics of the observed agreement and the chance-corrected agree-
ment. Secondly section 3 introduces two mathematical models for estimat-
ing and assessing measures. Thirdly in section 4 we consider the measure
of Cohen, Scott, Gwet and Brennan, Prediger. Finally section 5 concludes
the paper with a discussion of the features of the measures and clues for the
application.

2 Properties of the observed agreement

We start with a contingency table for two observers A and B, k categories,
N observations (units) and nij number of observations that observer A and
B respectively classified into category i and j respectively:

Observer A

Observer B
Categories 1 2 . . . k

1 n11 n12 . . . n1k
2 n21 n22 . . . n2k
...

...
...

...
k nk1 nk2 . . . nkk

nii is the number of observed agreements in the category i, i = 1, . . . , k. We
have

N =
k∑

i=1

k∑
j=1

nij .

We consider the relative observed agreement among observers

p0 :=
1

N
·

k∑
i=1

nii .

The range of p0 is 0 ≤ p0 ≤ 1.
Now suppose that we only know the classification in categories by ob-

server A and B. The nij are not available. Which maximum value can p0
achieve? The contingency table must be switched from absolute frequency
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to relative frequency to answer this question:

Observer A

Observer B
Categories 1 2 . . . k marginal totals

1 f11 f12 . . . f1k f1·
2 f21 f22 . . . f2k f2·
...

...
...

...
...

k fk1 fk2 . . . fkk fk·
marginal totals f·1 f·2 . . . f·k

Here
fij :=

nij
N
, i, j = 1, . . . , k

is the relative frequency and

fi· :=

k∑
j=1

fij , i = 1, . . . , k, f·j :=

k∑
i=1

fij , j = 1, . . . , k

are the marginal totals. It applies

1 =
k∑

i=1

k∑
j=1

fij =
k∑

i=1

fi· =
k∑

j=1

f·j .

Proposition 1 If only the marginal totals are given, then the maximal pos-
sible value of p0 is

max(p0) =
k∑

i=1

min(fi·, f·i) .

Proof: Let a1, . . . , ak be the result of the classification by observer A and
b1, . . . , bk the result of the classification by observer B. The maximum value
for nii is min (ai, bi). It follows:

max(p0) =
1

N
·

k∑
i=1

min (ai, bi) =

k∑
i=1

min(fi·, f·i)

2

Corollary 1 max(p0) = 1 if and only if fi· = f·i for all i = 1, . . . , k.

Proof: Suppose that max(p0) = 1. Suppose furthermore there exist i ∈
{1, . . . , k} such that f·i < fi·. Then we have

1 = max(p0) =

k∑
i=1

min(fi·, f·i) <

k∑
i=1

fi· = 1 .

5



Contradiction. The case f·i > fi· is similar. Conversely, if fi· = f·i for all
i = 1, . . . , k, then max(p0) =

∑k
i=1 fi· = 1.

2

We need the following approach for chance-corrected measures:

κc :=
n11 + · · ·+ nkk − c11 − · · · − ckk

N − c11 − · · · − ckk
=

k∑
i=1

fii − 1
N ·

k∑
i=1

cii

1− 1
N ·

k∑
i=1

cii

cii is the number of random matches of the category i, i = 1, . . . , k. The
denominator is the reference value and has to be reduced by the number
of random matches accordingly. However, this approach has a structural
weakness:

Proposition 2 Let the value of c11 + · · ·+ckk be fixed. The higher the value
of n11 + · · ·+ nkk, the smaller the influence of c11 + · · ·+ ckk on κc is.

Proof: The statement follows from

κc = 1− N − (n11 + · · ·+ nkk)

N − (c11 + · · ·+ ckk)
.

2

Example 1 Let N = 10 and c11 + · · ·+ ckk = 3. For n11 + · · ·+nkk = 5 we
get κc = 0, 29 and for n11 + · · · + nkk = 9 we get κc = 0, 86. In the second
case, the value of n11 + · · ·+nkk is by a factor of 1.8 higher, while the value
of κc is by a factor of 3.

The main question is how to estimate the agreement by chance (see Gwet
2014, p. 34 et seq.), strictly speaking the number of random matches cii.
We need probabilistic models for the different estimation methods and the
interpretation of chance.

3 Probabilistic Models

We use two models. Model 1 is the conventional urn model. (see Heumann
et al. 2016, p. 97 et seq.) There are k balls in the urn labeled with the
numbers 1 to k. We randomly draw one ball with replacement two times
and with consideration of the order of the balls. We get the probability
space (see Pestman 1998, p. 13)

({1, . . . , k} × {1, . . . , k},P({1, . . . , k} × {1, . . . , k}), P ) ,
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where P is the product measure P = P1⊗P2 with P (A×B) = P1(A) ·P2(B)
for all A,B ⊂ {1, . . . , k} and

P1(i) = P2(i) =
1

k
for all i = 1, . . . , k .

It follows P (i, i) = 1
k2

for i = 1, . . . , k.
For model 2, (X,Y ) is a two-dimensional real random variable, FXY the

distribution function of X and Y , FX the distribution function of X and
FY the distribution function of Y . (see Pestman 1998, p. 37, 40.) The
feature that the two observers are operating independently means X and Y
are stochastically independent:

FXY (x, y) = FX(x) · FY (y) .

In this context, FX and FY are called marginal distribution functions of
(X,Y ) (see Fisz 1976, p. 63 et seq.; Pestman 1998, p. 13 et seq.). If the
random variables X and Y have probability density functions fX and fY the
probability density functions of (X,Y ) is given by (Pestman 1998, p. 15,
Theorem I.3.2)

fXY (x, y) = fX(x) · fY (y) .

fX and fY are called marginal density function of (X,Y ).
We can use the last equation to estimate the agreements by chance for

observer A and B:
cii
N

:= fAB(i, i) = fA(i) · fB(i)

So the estimation of the agreement by chance is determined by the marginal
density functions in model 2.

4 Estimating the agreement by chance

In this section we take a look at some measures that are supposed to be
chance-corrected.

4.1 Cohen

Under model 2, Cohen 1960 estimates the marginal density function fA and
fB respectively with the marginal totals fi· and f·j respectively. However,
this choice results in structural problems.

Cohen’s agreement by chance is

pc :=
k∑

i=1

fi· · f·i =
k∑

i=1

f̂A(i) · f̂B(i) =
k∑

i=1

f̂AB(i, i) =
k∑

i=1

ĉii
N

.

So we have
κ := κc(pc) =

p0 − pc
1− pc

.
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The range of pc is 0 ≤ pc ≤ 1. – Now we want to study properties of κ. It
follows from Corollary 1

Lemma 1 It applies max(κ) = 1 for all k.

Lemma 2 (Cohen 1960) If only the marginal totals are given, then the
maximal and minimal respectively possible value of κ is

min(κ) = − pc
1− pc

and max(κ) =
max(p0)− pc

1− pc
respectively .

In particular −∞ < κ ≤ 1.

Proposition 3 If κ = 1, then the marginal totals are identical: fi· = f·i for
all i = 1, . . . , k.

Proof: From κ = 1 it follows

1 = κ =
1− pc
1− pc

=
max(p0)− pc

1− pc
.

The statement follows from Corollary 1.

2

Corollary 2 κ = 1 and complete agreement (
∑
nii = N) are equivalent.

What if the value of κ means in the case of no complete agreement for
example

∑
nii = N − 1? The answer to this question is difficult:

Proposition 4 Let the value of p0 < 1 be fixed. The smaller the value of
pc, the higher the value of κ is.

Proof: The statement follows from

κ = 1− 1− p0
1− pc

.

2

See also Feinstein and Cicchetti 1990, page 544.
Furthermore, we consider the effects of marginal totals on κ of answering

the question. We follow the argumentation of Feinstein and Cicchetti 1990.
They investigate 2× 2 contingency tables to study the effects well:

Observer A

Observer B
Categories 1 2 marginal totals

1 n11 n12 n1·
2 n21 n22 n2·

marginal totals n·1 n·2
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They use the proportion of marginal totals:

v :=
n·1
N

and w :=
n1·
N

Therefore we have

n·2 = (1− v) ·N, n2· = (1− w) ·N and pc = 2vw − v − w + 1 .

Nomenclature 1 (i) Marginal totals are called balanced, if v, w ≈ 0.5.
(ii) Marginal totals are called symmetrical, if v ≈ w.
(iii) Marginal totals are called asymmetrical, if v ≈ 1− w.

Corollary 3 Let the marginal totals are symmetrical. All other things being
equal, κ has a lower value in the situation of not balanced marginal totals
than in the situation of balanced marginal totals.

Proof: We have to show pc(v, v) ≥ pc(0.5, 0.5). It is pc(v, v) = 2v2 − 2v + 1
and pc(0.5, 0.5) = 0.5. The statement follows from

0 ≤ v(1− v) ≤ 0.25⇒ −0.25 ≤ v(v − 1) ≤ 0⇒ −0.5 ≤ 2v2 − 2v ≤ 0 .

2

Corollary 4 All other things being equal, κ has a lower value in the situa-
tion of perfect symmetrical marginal totals (v = w > 0.5) than in the situ-
ation of less-then-perfect symmetrical marginal totals (v, v − ε and w − ε, w
respectively, ε > 0).

Proof: Let w̃ := v − ε, 0 < ε < v ≤ 1 and ṽ := w − ε, 0 < ε < w ≤ 1. We
have to show pc(v, w) > pc(v, w̃) and pc(v, w) > pc(ṽ, w).
We are looking at the case pc(v, w) > pc(v, w̃). We have v+v > 1⇒ 2vε > ε
and therefore

pc(v, w) = 2v2 − 2v + 1 > 2v2 − 2vε− 2v + ε+ 1 = pc(v, w̃) .

The case pc(v, w) > pc(ṽ, w) is similar.

2

Remark 1 The statement of Corollary 4 also applies in similar situations.
An example can be found in Feinstein and Cicchetti 1990, page 546.

Corollary 5 Let v, w 6= 0.5 and ṽ := 1 − v, w̃ := 1 − w. All other things
being equal, κ has a higher value in the situation of asymmetrical marginal
totals (v, w̃ and ṽ, w) than in the situation of perfect symmetrical marginal
totals (v = w).
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Proof: We have to show pc(v, w) > pc(v, w̃) and pc(v, w) > pc(ṽ, w).
We are looking at the case pc(v, w) > pc(v, w̃). It is pc(v, w) = 2(v2 − v) + 1
and pc(v, w̃) = 2(v − v2). We have

v(1− v) < 0.25⇒ 2(v − v2) < 1− 2(v − v2) .

This shows the statement. The case pc(v, w) > pc(ṽ, w) is similar.

2

Remark 2 (i) Corollary 5 also holds if v ≈ w, w̃ ≈ 1 − w or ṽ ≈ 1 − v.
Feinstein and Cicchetti 1990 give an example of this on page 545.

(ii) The condition “v > 0.5 or w̃ > 0.5 and ṽ > 0.5 or w > 0.5 re-
spectively" is easy to fulfill. Where appropriate, we define v := n·2/N and
w := n2·/N .

As the above Corollaries suggest, the point v = w = 0.5 has a specific
relevance:

Proposition 5 pc(v, w) has no local extreme value, but a saddle point at
v = w = 0.5.

Proof: We determine the first partial derivatives of pc(v, w):

∂

∂v
pc(v, w) = 2w − 1,

∂

∂w
pc(v, w) = 2v − 1

The condition grad pc(v, w) = (0, 0) leads to 0 = 2w − 1, 0 = 2v − 1. We
have the critical point (0.5, 0.5). Second partial derivative test:

∂2

∂v2
pc(v, w) = 0,

∂2

∂w2
pc(v, w) = 0,

∂2

∂vw
pc(v, w) = 2

Since D(0.5, 0.5) = −4, pc(v, w) has no local extreme value, but a saddle
point at (0.5, 0.5).

2

4.2 Scott and Gwet

Under model 2, Scott 1955 considers like Cohen 1960 the marginal totals
fi· and f·j respectively as realisations of the marginal density function fA
and fB respectively. The advanced part is that he stabilizes the results by
averaging:

πc :=

k∑
i=1

fi· + f·i
2

· fi· + f·i
2

=

k∑
i=1

f̂A(i) · f̂B(i) =

k∑
i=1

f̂AB(i, i) =

k∑
i=1

ĉii
N

.
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He defines
π := κc

(
fi· + f·i

2

)
=
p0 − πc
1− πc

.

Under model 2, Gwet 2014, p. 104 considers the marginal totals fi· as
realisations of the marginal density function fA and defines the estimator for
the marginal density function fB as a weighted complement:

γ̂c :=
1

k − 1
·

k∑
i=1

fi· + f·i
2

·
(

1− fi· + f·i
2

)
=

k∑
i=1

f̂A(i) · f̂B(i)

=
k∑

i=1

f̂AB(i, i) =
k∑

i=1

ĉii
N

.

So we have the coefficient

γ̂1 := κc (γ̂c) =
p0 − γ̂c
1− γ̂c

.

Lemma 1 and 2, Proposition 3, Corollary 2 and Proposition 4 also apply
to π and γ̂1.

Proposition 4 is the basis for the structural influence (balanced, sym-
metrical, asymmetrical) of the marginal totals on Cohen’s κ. Since πc and
γ̂c are also calculated with the marginal totals, there is a similar structural
influence for π and γ̂1.

4.3 Brennan, Prediger

Under model 2, Brennan and Prediger 1981 choose on pages 692 et seq.
the discrete uniform distribution for the marginal density functions. So the
agreement by chance is

k∑
i=1

1

k
· 1

k
=

k∑
i=1

f̂A(i) · f̂B(i) =
k∑

i=1

f̂AB(i, i) =
k∑

i=1

ĉii
N

=
1

k
.

They define

κk := κc

(
1

k

)
=
p0 − 1

k

1− 1
k

∈ [− 1

k − 1
; 1] .

Guttman 1946, has already chosen this approach.
What properties does κk have? From Corollary 1 it follows

Lemma 3 It applies max(κk) = 1 for all k.

If the design of the experiment is established, then the marginal totals have
the same effect on κk for every observer. Indeed the number of categories
has an effect on κk:
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Lemma 4 It applies for fixed p0

lim
k→∞

κk = p0 .

In other words, the higher the number of categories, the smaller the value of
agreement by chance is. However that is only one side of the coin.

As the number of categories increases, the agreement is decreasing (see
Bennett et al. 1954, p. 306). This is because it is more difficult for observers
to differentiate between categories as numbers increase. If we view p0(k) :=
p0 as a realisation of a random variable Zk, then the increasing insecurity in
decision for the appropriate category can be expressed as follows:

lim
k→∞

P̃ (Zk > ε) = 0

Zk converges in probability towards 0. Here Z2, Z3, . . . are random variables
on a probability space (Ω̃, Ã, P̃ ).

In summary, as the number of categories increases, 1
k and p0 become

smaller. This shows the influence of the number of categories on the experi-
ment.

5 Discussion

In addition to the purpose to remove the chance from the observed agree-
ment, the measure should have the following features. The values of the
measure enable the comparison of couples of observers in the same experi-
ment and also the comparison of experiments. Furthermore the values of the
measure should be meaningful. Which measure has these features?

First of all, there are limits to the meaningfulness by Proposition 2.
This means that the influence of chance on all measures of the form κc
including the measures considered here depends on the magnitude of the
observed agreement. Moreover, if agreement by chance is estimated by a
sample, the characteristics of the observers are taken into account. Thus,
the meaningfulness is further limited. The last argument doesn’t apply to
κk.

Until now, p0 has been considered as observed agreement. Under model
2, p0 can also be considered as special sum of stochastic independence. This
applies equally to pc. Accordingly, p0 − pc is the difference between part
of the observed stochastic independence and the corresponding part of the
estimated theoretical stochastic independence (see Pestman 1998, p. 172 et
seq.; Heumann et al. 2016, p. 238). So, why is p0 reduced by chance? After
all, the quantities for the deviation of observed stochastic independence and
theoretical stochastic independence in the χ2-test on statistical independence
are the differences fij − fi· · f·j (see Gwet 2014, p. 35).
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Furthermore, the effects of marginal totals on κ don’t enable the com-
parison of couples of observers in the same experiment or the comparison of
experiments. Moreover, it is difficult to interpret the magnitude of κ. (see
Gwet 2014, p. 34, 166; Landis and Koch 1977, p. 164 et seq; Stoyan et al.
2018.)

Similar arguments apply to Scott’s π and Gwet’s γ̂1.
Brennan and Prediger choose the same marginal density function for all

observers. So we always have the same effects of marginal totals and we
can compare couples of observers in the same experiment. Experiments are
comparably, if the experiments have the same number of categories.

Under model 2, p0− 1
k can be considered as difference between part of the

observed stochastic independence and the corresponding part of estimated
theoretical stochastic independence. This applies only if the marginal density
function of the observers is the discrete uniform density function. Under
model 1, p0 − 1

k is the difference between the observed agreement and the
sum of random choices of a category:

k∑
i=1

ĉii
N

=
1

k
=

k∑
i=1

1

k2
=

k∑
i=1

P (i, i)

If the discrete uniform distribution describes chance, then κk is a chance-
corrected measure.

What about the significance of the values of κk? In the case of negative
values, it is very unlikely that the observers agree. Corollary 2 shows that
κk = 1 and complete agreement are equivalent. An agreement should be
likely if p0 is at least twice the size of the random agreement. For p0 = 2

k ,
κk has the value

2
k −

1
k

1− 1
k

=
1
k

k−1
k

=
1

k − 1
.

So if the values are in the interval [0; 1
k−1), then an agreement is unlikely.

With increasing k the fraction 1
k−1 becomes smaller and smaller. Analogously

the observed agreement gets smaller and smaller. A statement about values
in the interval [ 1

k−1 ; 1) depends on the design of the experiment. In this
context it is also important that the categories are clearly different.

Now we would like to enquire the question of which measure is chance-
corrected. Gwet 2014, p. 32 writes about it: “The idea of adjusting the
percent agreement p0 for chance agreement is often controversial, and the
definition of what constitutes chance agreement is part of the problem." (see
Brennan and Prediger 1981, p. 688 et seq.) We understand by chance agree-
ment the random measurement error. When measuring physical quantities,
it is common to assume the normal distribution for the random measure-
ment error (see Pestman 1998, p. 62). Which distribution for the random
measurement error is suitable here?
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Ten timekeeper take the time of a sprinter. Some measured times will
be above the true value, some below. The smaller the distance of the mea-
sured value from the true value, the more likely it is. So we assume the
normal distribution for the random measurement error. Let’s move on to
our case, the nominal scale. Ten people are to assign a brush to a living
area: Bath, kitchen, living room, workroom or bedroom. The brush belongs
in the kitchen. What is the most probable random false classification now?

In the case of timekeepers, we use the total ordering of the real numbers
to determine how far away a false classification is from the correct one. We
then determine that the closer the false classification is, the more likely it is.
Distance matrix, similarity measure and probability measure correspond.

Every colour can be assigned to a specific wavelength. If the categories
are colors, then there is a natural order. We have a ordinal variable. A
corresponding probability measure can be defined: If green is the right color,
then the false classification of yellow is more likely than red. This probability
measure can be used as the random measurement error for all observers.

What probability measure should be chosen if there is no natural order
or similarity measure, as in the example of the living area? Any false clas-
sifications are equally likely. The random false classification of the brush
to the living room is just as likely as the random false classification to the
workroom. It’s like the urn model, model 1. The corresponding probability
measure is the discrete uniform distribution.

In summary, assuming that chance agreement is the random measure-
ment error, we can state: In order to avoid difficulties with different marginal
totals, a marginal density function for the random measurement error is
chosen for all observers. If there is a natural order, a distance matrix or
a similarity measure, the corresponding probability measure determines the
marginal density function. Otherwise, the marginal distribution is equal
to the discrete uniform distribution, that is the approach of Brennan and
Prediger.
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