
Master Thesis
Parsing Log Data for Compression and Querying

In Partial Fulfillment of the Requirements for the Degree

Master of Science

Submitted to the Faculty of Mathematics, Natural Sciences and Computer Science at
the University of Applied Sciences Mittelhessen

by

Simon Stockhause

May 30, 2023

Referent: Prof. Dr. Harald Ritz

Korreferent: Dr. Dennis Priefer

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been made to
the work of others. Gießen, May 30, 2023 Simon Stockhause

Logs are descriptions of system events documented and stored in textual form. They
are vital to understanding system behavior by analyzing them. The increasing com-
plexity of systems leads to a larger volume of log data. This, combined with faster
development cycles and the widespread distribution of systems, poses significant chal-
lenges in efficiently processing and storing log data while minimizing computational
and storage costs. This thesis conducts a systematic literature review investigating
log parsing and compression techniques. A novel log parsing approach is proposed,
enabling the detection of previously elusive tokens within log records. These tokens
contribute to constructing regular expressions that aid in the log compression process.
The effectiveness of the parsing approach is evaluated by comparing it with twelve other
parsers using a benchmark. The evaluation reveals that the impact of parsing results
on the compression ratio is minimal. Additionally, data compressed by specialized log
compressors show positive characteristics not found in general–purpose compression
techniques.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Objectives . 2
1.3 Delimitations . 3
1.4 Methodology . 4
1.5 Outline of the thesis . 4

2 Background 7
2.1 Data . 7

2.1.1 Unstructured Data . 7
2.1.2 Semi–Structured Data . 7
2.1.3 Structured Data . 9

2.2 Log Data . 9
2.2.1 Parsing . 12
2.2.2 Compression . 13

2.3 Problem Solving with Log Data . 14

3 Concept 21
3.1 Identification of Parsing, Compression and Query Strategies 21

3.1.1 Motivation . 21
3.1.2 Review Planning . 22
3.1.3 Study Selection . 26
3.1.4 Results . 26
3.1.5 Discussion . 34

3.2 Design Method . 35
3.3 Problem Statement . 37

3.3.1 From Messy to Meaningful: The Need of Parsing Log Data . . . 37
3.3.2 The Variable Template Extraction Problems 40
3.3.3 Requirements Derivation . 40

3.4 Design for a Logparser and Regluar Expression Generator 43
3.4.1 Exploiting the Structure of Log Data 43
3.4.2 Parser Design . 54
3.4.3 Regex Generator Design . 55

i

Contents

4 Implementation 57
4.1 Overview of the Implemented System 57

4.1.1 Variable Template Extraction Parser (VTEP) 57
4.1.2 Variable Template Extractor (VTE) 58

4.2 Configuration . 58
4.3 Variable Template Extraction Parser . 60
4.4 VTEP to VTE JSON Interface . 67
4.5 Variable Template Extractor . 68
4.6 Parser Benchmark . 77

5 Evaluation 81
5.1 Analyzing Parsing and Performance of VTEP: Evaluating Accuracy,

Efficiency, and Robustness . 82
5.2 Analyzing the Impact of Parsing and Custom Regular Expressions on

Log Compression . 85
5.3 Investigating the Impact of Parsing and Compression on Log Data’s

Processability . 88
5.3.1 Parsing . 89
5.3.2 Compression . 91

5.4 Evaluation of Research Methods . 92

6 Conclusion 95
6.1 Validity . 97
6.2 Related Work . 99
6.3 Further Research . 99
6.4 Perspective . 100

Bibliography 101

List of Abbreviations 112

List of Figures 113

List of Tables 115

Listings 117

ii

1 Introduction

Storing, processing, and transmitting data is the essence of computer science. Doing
so efficiently requires a broad understanding of its structure and usage. The structure
defines what can be done with data. The usage defines what should be done with data.
Data parsing uses the structure in the context of its usage to provide value to the log
analysis processing chain. An algorithm to process log data to tailor the output to
the specific needs of the use case is the heart of log data parsing. However, there are
many algorithms designed to do precisely that. Each has unique characteristics, such as
performance, compression ratio, or used data structures. In this work, an analysis of
state–of–the art log parsing techniques and selected use–cases, such as compression is
conducted. A short analysis and evaluation of the approaches to log data parsing is
conducted to provide an understanding of their usage, benefits, and limitations. Selected
log data compressors are compared and a recommendation is provided.

1.1 Motivation

Log data has the potential to provide a lot of information about the system state and
computed state changes. Log data refers to a collection of documented system or
application events, similar to a diary for systems. A log record, a single diary entry,
usually consist of a timestamp and arbitrary content:

1 2022-12-15 21:01:23 INFO User login: user@example.com

Listing 1.1: Simple log record

Logging from a software engineering perspective is omnipresent, and the practice of
logging is deeply ingrained in developing software [1]. A systematic map study shows
that the interest of practitioners and researchers in log data has been continuously
increasing and that this trend began in the early 2000s [2]. Business–oriented data
analysis to understand user and system behavior and recognize trends is becoming
increasingly relevant. However, analyzing log data is becoming more challenging because
of the increasing amount of data generated by large-scale systems. Large–scale systems’
sheer amount of data is hard to manage. One case study investigated the cloud system

1

1 Introduction

of Aliyun Mail, a service provided by Alibaba Cloud. The system handles over 20
million user requests daily, resulting in 30–50 gigabytes of sampled log data per hour
[3]. Uber reports to have generated 200 terabytes of data per day by their spark cluster
[4]. The growth in applications, transformation to cloud platforms, or new architecture,
such as microservices, contribute to the diversification of log data sources, formats,
and information content. This suggests that log data is a relevant source for advanced
analytics or security considerations.

Yuan et el. stated the importance of log data generation in common open–source
software [5]. Generating data needs effective data management, and storage is a critical
aspect of managing log data. A survey suggests that 68% of the participants spend
more than 30% of their IT–budget on data storage, backups, and recovery [6]. Uber
reports 1.8$ million dollars of potential cost for log data storage alone [4]. These recent
reports indicate an industrial interest in log file processing. Also, the academic interest
in log data processing is given [7][8][3][9].

1.2 Research Objectives

As the practical relevance of log data is shown, handling it is the day–to–day business
for many software engineers, data scientists, and decision–makers. The primary goal of
this thesis consists of researching log analysis techniques and their approach to log data
parsing, compression, and querying. One goal is to identify the benefits and limitations
of applying them. Providing a summary of state–of–the–art log analysis techniques for
the scientific community focusing on log parsing and querying techniques on compressed
log data. Nevertheless, it aims to provide guidance to practitioners in choosing the
appropriate techniques for their needs.

The objectives serve as a framework for addressing the research questions, outlining
the approach and methodology used to investigate and provide answers to the research
questions.

O1: Research Log Data Query and Compression Strategies

Collect log data query and compression strategies. This is done by conducting a
Systematic Literature Review (SLR).

O2: Investigate Log Data Query and Compression Strategies

It should be clarified when they can and cannot be applied. It also should be described
how they can be applied. This is done by conducting a SLR.

O3: Analyze the Performance Implications of Each Strategy

2

1.3 Delimitations

Because each strategy requires computation, it should be described what their perfor-
mance implications are.

O4: Conduct Performance Comparison of the Presented Parser

Three metrics will be evaluated to compare the performance of the presented parser
against other parsers used or potentially usable in log data query and compression
strategies: accuracy, robustness, and efficiency. These metrics are well defined in the log
parsing literature [10]. The results of this comparison will help evaluate the performance
of the presented parser relative to other parsers identified in the SLR.

O5: Recommend Log Query and Compression Technology Based on the SLR

The ideal would be the identification of a strategy that applies broadly while minimizing
additional architectural complexity, compute requirements, and storage space. A
discussion is conducted and a recommendation is provided based on the discussion.

The defined goals lead to the following research questions:

R1: How can the structure of log data be exploited to reduce storage
requirements through compressing while maintaining the ability to query
the data?

R2: How do parsing and compressing log data affect its further processabil-
ity?

R3: Is there a log data compression and query technology that practitioners
can use that is widely applicable while minimizing additional architectural
complexity, computational requirements, and storage space?

1.3 Delimitations

This thesis explores the use of log data techniques that combine compression and
queryability to achieve the goal of recommending a technology. This research focuses
solely on log data and does not consider other types of data, such as unstructured,
semi-structured, or structured data. The parsing techniques used rely exclusively on log
events as input and do not incorporate static code analysis to derive parsing rules. This
limitation intentionally narrows the scope and concentrates on techniques that solely
depend on log events. Additionally, this thesis does not delve into the application of
log parsing results, such as log templates, in log analysis or its subfields like anomaly
detection or root-cause analysis. Considering the vast number of log parsers available
in the literature, only a subset is selected for comparative analysis. The same selection

3

1 Introduction

process is applied to log compressors, comparing general-purpose compressors and
log–specific compressors. Lastly, this study focuses on publicly available log datasets,
primarily used for research.

1.4 Methodology

The foundation for the theoretical knowledge about log data and its processing techniques,
including parsing and compression, was developed by conducting a SLR following
Kitchenham’s work [11]. Based on the theoretical foundation, a design science research
project has been defined, designed, implemented, and evaluated to address R1, where
the knowledge gained from the SLR is vital to decide on design choices reasonably.
The design science methodology employed in thesis follows the work of Wieringa [12].
The experimental results combined with the theoretical background from the SLR are
used to draw conclusions regarding R2. Furthermore, the identified compressors are
compared, resulting in a recommendation to answer R3.

1.5 Outline of the thesis

This thesis develops as follow:

Chapter 2 introduces the main concepts related to this thesis. It describes log data and
their computational usage. It also provides an overview of problems that can be
solved with the analysis of log data.

Chapter 3 begins by introducing the methodology used to design, implement, and
evaluate the prototypes developed as part of the research. The chapter then delves
into the methodology and presents the results of the SLR conducted. Additionally,
it proceeds to define the problem statement and derives the requirements based
on the findings from the SLR. Finally, the chapter presents the design for a parser
and regular expression generator, outlining the approach taken to address the
identified challenges.

Chapter 4 details the implementation of the prototype and the evaluation benchmark
used to collect measurables for the following evaluation.

Chapter 5 evaluates the design of the prototype. It continues to describe the procedure
of evaluation and conducts a analysis considering various metrics to validate the
design. It concludes by providing a recommendation for log data compression
technology based on the findings.

4

1.5 Outline of the thesis

Chapter 6 draws the conclusion of this thesis, elaborates on the related work and
describes the future perspective. It also addresses the validity concerns in the
research procedure and describes countermeasures taken.

5

2 Background

This chapter describes basic concepts which are encountered throughout the thesis. It
is intended to be a reference whenever terms requiring a more detailed explanation are
introduced. The first Section 2.1 describes the different types of data encountered in logs
and how they are structured. The second Section 2.1 describes log data in the context
of log data processing. The last section 2.3 on page 14 provides a basic introduction to
log analysis and topics closely related to this thesis.

2.1 Data

2.1.1 Unstructured Data

Unstructured data refers to data that lacks any specific format and does not have a
predefined schema. These are typically saved as plain–text files and are not organized
in any specific structure. The following example illustrates unstructured data generated
by a real–world application generating log data:

1 2022-12-15 21:01:23 INFO User login: user@example.com

2 2022-12-15 21:01:35 WARNING Database connection error: Could not

connect to server

3 2022-12-15 21:02:12 ERROR File not found: /var/www/html/index.html

4 2022-12-15 21:02:23 INFO User logout: user@example.com

Listing 2.1: Exemplary unstructured log records

It is saved as a sequence of text lines, with each line representing a single log record.
The data is considered unstructured since it lacks a predefined structure or schema. The
information in each log record is free–form text without any specific format or structure.

2.1.2 Semi–Structured Data

Semi–structured data, unlike unstructured data, has some degree of organization or
structure but is not as structured as fully structured data. Semi–structured data includes

7

2 Background

data that have a predefined format. Comma-Separated Values (CSV) files or JavaScript
Object Notation (JSON) objects are examples of such data. They lack a strict schema
that specifies each record’s specific data types or fields. The following two examples
illustrate semi–structured data. The first example displays log records in CSV format
from a real–world application, while the second example displays artificially constructed
JSON Syslog log records.

1 timestamp,log_level,log_message,source

2 2022-12-15 21:01:23,INFO,User login: user@example.com,/var/www/html/

login.php

3 2022-12-15 21:01:35,WARNING,Database connection error: Could not

connect to server,/var/www/html/db.php

4 2022-12-15 21:02:12,ERROR,File not found: /var/www/html/index.html,/

var/www/html/index.php

5 2022-12-15 21:02:23,INFO,User logout: user@example.com,/var/www/html/

logout.php

Listing 2.2: Exemplary CSV log records

1 {

2 "timestamp": "2022-12-15 21:01:23",

3 "facility": "auth",

4 "severity": "info",

5 "hostname": "www.example.com",

6 "app_name": "login",

7 "proc_id": "12345",

8 "msg_id": "user_login",

9 "structured_data": {

10 "user": "user@example.com"

11 },

12 "message": "User login: user@example.com"

13 },

14 {

15 "timestamp": "2022-12-15 21:01:35",

16 "facility": "daemon",

17 "severity": "warning",

18 "hostname": "www.example.com",

19 "app_name": "database",

20 "proc_id": "12345",

21 "msg_id": "connection_error",

22 "structured_data": {

23 "server": "localhost"

24 },

25 "message": "Database connection error: Could not connect to server"

26 }

Listing 2.3: Exemplary JSON Syslog records

8

2.2 Log Data

The log data in both examples contains information about records of different log levels,
that is, the severity of the event, system information, or errors and warnings that occur
during execution. However, the log data is semi–structured because it has a predefined
format. Such formats include Syslog or the format specified by the CSV headers, but it
lacks a strict schema that defines the specific data types or fields for each log record.
In the JSON example, the structured_data field can have an unknown type and an
arbitrarily large number of sub–fields.

2.1.3 Structured Data

Structured data is data that follows a specific structure definition and is stored in a
structured manner. A typical persistent target is a database, storing the data in a
table. This type of data has a well–defined schema with consistent data types and
fields for each record, making it easier to search and analyze than unstructured or
semi–structured data.

However, managing the databases and their schemas can be challenging and inflexible,
particularly in large–scale systems or corporate environments with many dynamic data
sources. In context of log management, these environments often need to consider the
scalability of systems, the management of new log schemas and sources and adapting the
analytic pipeline can be complex and requires careful consideration. This complexity, at
last, justifies the existence of the other two mentioned structure types.

2.2 Log Data

Log data is a specific type of data similar to a journal but for some sort of system.
Besides the ways described in the previous section, log data can also be represented as
data structures familiar in the context of computer science. Some common log data
structures found in processing log data are:

Flat–file structure: This simple structure stores log data as a sequence of text lines,
with each line representing a single log record. Logs with a flat–file structure are
typically stored in plain–text files and can be easily read and processed using
text–processing tools and programming languages. In the context of programming
languages, the flat–file structure is comparable to an array.

Structured data: This more complex structure stores log data in a semi–structured or
structured format, such as a CSV file, a JSON object, or a database table. Log
data with such a format is organized into fields, with each field representing a
specific piece of information, such as the timestamp, the log level, the log message

9

2 Background

body, and the source of the log. In the context of programming languages, the
structured data structure is comparable to a table.

Graph data structure: The graph data structure is a network–like structure that stores
log data as a collection of nodes and edges, with each node representing a log
record and each edge representing a relationship between two log entries. This
data structure can be useful for representing complex, interconnected relationships
between different log entries and can be quickly processed using graph algorithms.
This data structure is most often found in log analysis. Tak et al. present an
application for such a structure, where the absence or an exceeding amount of
relationships or edges diverge from the reference graph, indicate an error behavior
of the system, and enable identification of the exact location of the root–cause
[13].

Hierarchical data structure: The hierarchical data structure is a tree-like structure that
stores log data in a hierarchical format, with parent-child relationships between
different log entries and therefore a specialized graph data structure. Hierarchical
log data can be useful for representing complex relationships between different
log entries and can be quickly processed and represented using tree-traversal
algorithms and tree–like data structures. This data structure, notably prefix-tree,
is often used in more specialized log parsers, which are exhaustively presented in
Section 3.1 on page 21 and is an essential data structure of the tool presented in
Chapter 4 on page 57.

Prefix–trees are one of the most prominent log parsing data structures in the literature
[14, 15, 16, 17, 18, 19]. A prefix–tree in log parsing is very versatile. The most basic way
of using it is placing each character of a given position as a node in the tree. Considering
scenario (a) of Figure 2.1 on the next page of a string suggestion application. The
input starts with the letter G. Since the root node contains a single child node with the
value G, all root–to–leaf paths are suggested. The following input is O. The first layer
contains two children, i.e., A and O. Next, O is chosen, and the remaining candidate,
GOKU is suggested. This application does not yet prove useful for log files, except
for finding the Longest Common Subsequence (LCS) of an arriving log record and
all available log records, for which better algorithms are known, which solve the LCS
problem in quadratic time and linear space [20, 21]. However, it demonstrates the basic
idea of a prefix–tree.

Now consider a scenario with a fixed depth prefix–tree. This scenario contains some
definitions. There are three types of nodes. These are a single root node, internal nodes,
and leaf nodes. The root node represents the starting node. Internal nodes represent
the length of each value – the character count of the words – in the following leaf node.
A leaf node contains a list of lists of strings and a value representing the word’s first

10

2.2 Log Data

(a) Single character prefix-tree (b) Fixed depth prefix–tree

Figure 2.1: Two applications for prefix–trees (a) can match an input string on the fly;
(b) can group similar strings based on length and common prefix

letter. The depth is a parameter and is defined as 3. And there is a similarity function
sim(a,b) that provides a similarity metric. In this case, how similar two strings are
based on whether a character at position i is equal. The tree illustrated tree state in
(b) came about through inputting the strings in the following order:

Garp, Goku, Gandalf, Garrosh, Garados

Garp with length 4 creates a new internal node with the value four and a new leaf node
with the representative value G. Goku is also put into this group. However, now it must
decide whether it should be on the same list as Garp. For simplicity, the threshold is
defined as 3. That means three characters must match to consider the compared strings
similar. Next, the input is Gandalf. A new internal and leaf node is created, and the
values are assigned. The same principle applies for Garrosh the sim(Gandalf, Garrosh)
results to 2 not greater or equal than the threshold. The last input is Garados. Since
the leaf node reached through the internal node with length 7 has two lists, it must be
decided whether it should belong to the Gandalf or Garrosh list. The similarity with
sim(Garrosh, Garados) confirms that the threshold is satisfied and Garados is put into
the same group as Garrosh.

11

2 Background

This example draws attention to certain characteristics of fixed depth prefix-trees in the
context of log parsing:

1. Input order matters for grouping tokens together.

2. Variable length is a determining factor that excludes similarity checks even when
the possibility is given that two tokens are very similar (Garp sharing the first
three characters with Garrosh and Garados).

3. The depth parameter, that is, how many internal nodes are used, is responsible
for generalization and specialization. For example, with a depth of 4, the length
7 path could have a third layer with the a value. This Ga path would have led
to grouping all three length 7 values into one group, leading to a more accurate
result.

4. It is an obvious choice for log parsers to enable a stream–like processing approach
with this data-structure, because the grouping is not dependent on the knowledge
of the complete set of log records.

This described scenario is essentially how prefix–tree–based log parsing techniques work
with some nuances and deviations added, such as different similarity metrics or node
definitions.

2.2.1 Parsing

Log data parsing is a crucial step in the log analysis process that involves converting
unstructured log data into structured information, which makes it easier to search,
analyze and extract important insights from logs. The goal is to transform log data,
i.e., text, that is tailored to be human–readable to a machine-readable format.

The preceding step is to collect logs from various sources, such as servers, applications, or
network devices. The collected data is then processed to identify common patterns and
structures within the log data. This is done using techniques such as regular expressions,
clustering, heuristics, evolutionary algorithms, machine–learning algorithms, iterative
partitioning, and similarity metrics.

Clustering is the process of grouping log records based on various characteristics such as
log record length, data structure–based clustering, as explained in the previous section,
or the remaining characters after removing words, which contain numbers or special
characters [22].

12

2.2 Log Data

Heuristics use characteristics of logs to define rules, which for example determine a
token to be static or dynamic. A very common rule in context of log data parsing is
that a token that follows an equals sign is defined as an dynamic token. Other rules
such as IP address or file system path are also present. Those are often enforced by
applying regular expression to a specific token. If the regular expressions matches, then
the corresponding rule is applied.

Iterative partitioning involves dividing a dataset into smaller, more manageable subsets
that can be processed independently. Each subset undergoes a specific function or
operation, and the results are subsequently merged or aggregated to produce a final
outcome.

There are many similarity metrics available. Some commonly found metrics are LCS,
Jaccard Distance or Cosine Similarity. In context of log data parsing, these metrics are
used to determine whether a pair of elements should be grouped, clustered, partitioned or
merged. The metrics usually is combined with a certain threshold. A threshold is a value
that determines the boundary between two decision, such as is is element X similar
to Y , which is either yes or no based on the outcome of similarityFunction(X,Y) ≤
threshold.

2.2.2 Compression

Dictionary–based Compression

Dictionary-based compression is a lossless data compression technique that replaces
repeated occurrences of data with references to a dictionary or a table containing
previously encoded data. This technique is used extensively in log data compression
[16, 17, 23].

The following example in Figure 2.2 on the following page illustrates this concept. In
example (a), a single dictionary compression is done. First, all tokens that occur more
than once are identified and stored in a dictionary. All identified tokens are replaced with
their shorter and less space–requiring encoding identifier. This results in a dictionary of
dynamic tokens and their mapping to an identifier, effectively compressing the data.

The example (b) uses two dictionaries to compress the data further. First, the template
is extracted that represents all four log records. The dynamic tokens are stored in
another dictionary, like in the previous example. The resulting compressing now stores
the log template id and a list of variables, where the position in the list corresponds
to the token that needs to be retrieved from the dictionary when decompressing. The
multi-level dictionary compression of log files is the central idea of Compressed Log

13

2 Background

Processor (CLP), a promising tool for this task and an object of further investigation in
this thesis [23].

(a) Single–level dictionary compres-
sion

(b) Multi–level dictionary compres-
sion

Figure 2.2: Exemplary dictionary compression with single and multiple levels

Content–Defined Chunking

Content–Defined Chunking (CDC) is a method of splitting large files into smaller, more
manageable pieces. Compression algorithms need to consider large file sizes. They
simply can not load the entire file into memory for compression. Therefore chunking is
required. The intuitive way of chunking a large file is to define static values by whom
the file is chunked, i.e., 64KB or 4MB chunks. Due to insertion, removal, or editing
operations, this approach suffers from shifting boundaries [24]. CDC does not split every
N byte, but instead determines the boundary of a chunk by checking specific bytes of a
hash to meet criteria, such as the least significant 13 bit of a 48 byte rolling hash has to
be zero [25]. A rolling hash most prominent for this task is the Rabin fingerprint [26].
Rolling hashes are calculated by depending only on the preceding hash. So given the
assumption that the outcome of meeting the criteria is evenly distributed, the chunks
are evenly distributed as well [25, 26]. Applications for CDC are file transmission, file
synchronization, or log file compression [25, 27, 28]. Especially in file compression CDC
is used in two ways. The first is redundancy elimination, a well–researched characteristic
of this technique [24, 29, 30, 31]. The second log–specific characteristic is derived from
the redundancy elimination and serves as a clustering technique [28].

2.3 Problem Solving with Log Data

At the 2018 Observability Practitioners Summit, Cantrill presented his view on observ-
ability and said that one must resist the temptation to quick hypotheses. To constrain
a problem, such as complex debugging scenarios, one must observe the system and ask
questions to get answers [32].

14

2.3 Problem Solving with Log Data

‘To debug methodically, we must resist the temptation to quick hypotheses, focusing
rather on questions and observations’ [32]

He argued that distributed systems reached such an immense complexity because they are
– as the state–of–the–art modern computing systems – built upon the history of software
engineering and its abstraction layers, which also are built upon abstraction layers
yielding multi–layered abstractions. The states of a modern (distributed) computing
system very complex and strongly interconnected. Therefore, finding the cause of a
performance issue or complex failures by only thinking and hypothesizing about it is
not an efficient and sane approach to tackling these problems [32].

To solve these problems, asking questions that help narrow the investigation is essential.
Cantrill says, ‘Software is observable when it can answer your questions about its
behavior’ [32].

Shkuro defines observability as the ‘capability to allow a human to ask and answer
questions’ and continues this definition by saying, ‘the more questions we can ask
and answer about the system, the more observable it is’ [33]. Therefore, observability
in software engineering can be built up and gradually improved by increasing the
understanding of the software systems with the help of tooling. The possible observable
quantities can be categorized into observability signals.

Metrics, logs, and traces are commonly called the pillars of observability. This is a
historic artifact, since the signals are often isolated collected, processed and analyzed,
resulting in three different tech-stacks. However, these three data types are not what
defines observability. Still, this raw data must be correlated and interpreted to be
helpful. They are more data types, such as alerts or Real User Monitoring (RUM).
More importantly, observability is how to make sense of and use these signals. Analysis
and visualization tools can aid in this process. Log data holds a unique position in this
context, as metrics and traces can be derived from it. Specific metrics, such as the
number of log records received, can be extracted from log data. The log data can be
enriched with additional information, such as adding a field that identifies a specific
request. Humans still need to ask the right questions and make sense of the data to
solve problems. In other words, humans need to understand the information to solve
problems.

Metrics

Metrics are functions of numerical measurables or derivatives of one or more measurables.
Metrics are used to observe specific events over a given time. The following questions
are common:

15

2 Background

• How many requests went through service X?

• How much time took a request to enter and leave the Application Programming
Interface (API) gateway?

• How many services did my service discovery system detect?

These questions could be answered by making sense of metrics data. The usage and
usefulness of metrics can differ by quite a margin. Metrics have to have a specific goal
or question in mind, which they should address. In particular, a metric should only be
defined for a goal-oriented purpose. Imagine a contrary situation. A software system
offers hundreds or thousands of different metrics in that hypothetical situation. The
cognitive load to keep track of all that metrics may very well be higher than its use for
the observability infrastructure. In addition to that, metrics should continuously be
reevaluated. A metric that no longer serves a question or metrics whose corresponding
question no longer matters should not be tracked. The difficulty and overhead of
reevaluating too many collected metrics must be considered. Kua names some pitfalls
of metrics, including the purpose orientation [34]. The purpose should be aimed at the
‘whole means ensuring the metrics in use do not drive sub-optimal behavior towards
the real goal of delivering useful software’ and not at, as lean software development
describes, trying to optimize every single aspect of a system without the result in mind,
for example, Central processing unit (CPU) ticks per request in service X, which ‘is
often a very bad strategy.’ [35].

Logs

Developers intuitively tend to depend solely on logs. When learning software development
the STDOUT and its output is often the first choice in debugging a system. This does make
sense, because the system is an imperative synchronous system without any concurrency,
therefore inside a single process. This is especially true in the early stages of a developer’s
life. Printing a logline provides all the application’s state information the developer may
require in the combination of complete control of where he wants the log to appear. In
the worst case, e.g., the process stops with an uncaught error, most of the time, the log
provides a stack trace containing the error message, which caused the process to stop.
However, production systems are not that one-dimensional anymore. Shkuro describes
multiple difficulty levels of logging [33]. The first level is describes above and consists of
a single process. The second easiest level Shkuro describes contains no concurrency, but
multiple processes. That means processes may fork child processes, which handle single
requests alone. Webservers, e.g., Nginx, use the reactor pattern to handle multiple
requests by spinning up a child process to handle the request. The logging is now
distributed across multiple processes. This logging is still manageable to understand but

16

2.3 Problem Solving with Log Data

with increased cognitive load. The third level includes basic concurrency. Not only a
single child process can be created, but a single thread could also compute a request. To
track the request, one must identify the thread and collect only the logs corresponding to
the thread computing the request. The fourth level includes asynchronous concurrency.
Shkuro names concepts like ‘actor-based programming, executor pools, futures, promises,
and event-loop-based frameworks’ [33]. These concepts allow the distribution of a single
request across multiple threads. Therefore one has to collect logs from different threads
for a single request. Memory interference, race conditions, starvation problems, and
many more challenges are introduced. Making sense of logs alone becomes significantly
difficult. The fifth and last level is described as distributed concurrency. Network
communication and multiple hosts are introduced. Challenges like aggregating all logs
from multiple hosts, which by themselves could contain asynchronous concurrency, lead
to the near impossibility of making sense of the logs alone. Challenges like clock drift,
distributed fault handling, and complex request routing throughout the distributed
system are introduced. Shkuro describes this difficulty level of debugging with logs:

‘trying to troubleshoot request execution [...] is like debugging without a stack
trace: we get small pieces, but no big picture’ [33].

However, as stated, questions need to be asked with the big picture in mind. This leads
to the next major datatype or signal of observability.

Distributed Tracing

Distributed tracing is the concept of tracking a single request throughout a distributed
system. They differ from metrics and logs in that distributed tracing does not solely
focus on a single program, process, or thread. It aims to provide the possibility to
extract data by instrumentation. Instrumentation means that additional code has to be
implemented at certain critical events of the system. Such events could be the beginning
of a request since a common need is to track a request throughout the distributed
system or the end of a request at the point the system sends the response. In order to
be able to keep track of the request, including the communication between hosts over a
network or the change of the thread inside a process, the technology has to provide a
way to observe related events. In the past, this has been implemented in different ways.

Magpie implemented a scheme-based approach in which they generated ‘a named event,
timestamped with the local cycle counter’ [36]. These events had to be collected and
afterward processed offline. Magpie shows an early adaption of distributed tracing
and its application for performance debugging. Barham et al. implemented anomaly
detection with a probabilistic state machine using Magpie [36] . Each state transition is
an event that has a specific probability. Event sequences with a very low probability

17

2 Background

can be categorized as suspicious and, therefore could be an anomaly. The downside
of the scheme-based approach is its specialization in a specific system and its offline
processing.

Blackbox Inference is another approach, which is, in addition, a very attractive one
because it does not require an additional modification of the existing source code,
which is necessary for, e.g., the metadata-propagation approach. It uses statistical
regression techniques to infer the association between two events. Blackbox inference
comes with some downsides. Shkuro describes the following two downsides. The first is
the expensive computation of generated data and the increased latency because of it.
The second downside is the difficulty of creating causality between recorded events in
highly concurrent and asynchronous environments [33].

The last and the de–facto standard approach is metadata propagation[37, 38]. The
request is processed and then passed down with enriched trace metadata. This metadata
contains, e.g., a unique trace id, which can be used to identify all corresponding spans.
Spans are an abstraction of low-level events, such as making an API call or a database
query. The low-level events are used in the scheme-based approach but are hard
to understand and use as a developer because of their complexity and abstraction.
Distributed tracing enables log aggregation. They are, in fact, extended log data with a
new name. Since the trace id is unique per request, logs can be enriched by the trace id
and filtered by it. Distributed tracing requires additional infrastructure, such as agent
services per host and centralized service for trace collections, but offers insight, such as
relationships of components, on a very detailed level. An subjective observation is that,
distributed tracing is less commonly used in the real–world than metrics or logs, which
could be subject of further research.

Anomaly Detection

Anomaly detection is a concept with a broad range of applications, not necessarily
related to log data.

Anomaly detection refers to the problem of finding patterns in data that do not
conform to expected behavior [39].

Among the applications for anomaly detection are credit card fraud detection, insider
trading detection, network intrusion detection, or failure detection based on log data
[40, 41, 42].

Take, for instance, an application designed for detecting failures. First, observe the
service and establish a baseline of normal behavior using the previously defined types
of log-related data, such as metrics, log records, and traces. Suppose the service is

18

2.3 Problem Solving with Log Data

responsible for serving images, and every time an image is served, a specific sequence of
log records is generated:

1 2022-12-15 21:01:01 INFO requesting image of foo

2 2022-12-15 21:01:02 INFO image /var/www/foo.png is found

3 2022-12-15 21:01:02 INFO serving image /var/www/foo.png

Listing 2.4: Log records flow for serving an image

This three-log-record sequence represents a standard procedure for serving images. The
image name foo and its path /var/www/foo.png are dynamic tokens, and any variation
representing an image could occur. The normal sequence usually occurs for all kinds of
requested images. However, for a specific image bar, the sequence deviates:

1 2022-12-15 21:01:01 INFO requesting image of bar

2 2022-12-15 21:01:02 ERROR image /var/www/bar.png is found

3 2022-12-15 21:01:02 ERROR aborting

Listing 2.5: Log records flow for serving an image with an error

An automated anomaly detection pipeline could report such an incident, leading to a
investigation of the problem.

19

3 Concept

This chapter begins by providing the details of the planned and conducted SLR. The
results of the review are presented in Section 3.1. In Section 3.2 on page 35, the
method employed to design, validate, and implement the prototypes is introduced. A
comprehensive description of the problem can be found in Section 3.3 on page 37. From
this problem statement, the technical design questions are derived. Finally, Section
3.4.2 on page 54 presents the design of the parser, while Section 3.4.3 on page 55 focuses
on the design of the regular expression generator.

3.1 Identification of Parsing, Compression and Query Strategies

To address the research questions R1 and R2 outlined in Section 1.2 on page 2, a
SLR is planned and conducted. Firstly, the need for conducting an SLR is explained,
highlighting the reasons behind its inclusion. This is followed by a comprehensive
overview of the review planning, which encompasses the scope and methods used. The
relevant studies are categorized and discussed, providing a analysis of the literature in
relation to the research questions.

3.1.1 Motivation

The first identification of primary studies was made to evaluate the need for a SLR.
No exhaustive SLR focusing on log parsing and compression techniques was found, but
many recent studies were identified, which contributed to the field [17, 23, 43]. Each
research described log compression techniques. Also, recent literature described the
unification of log compression and queryability on compressed data [23, 43]. Chen et al.
conducted a SLR and provided an overview of log compression algorithms [44]. However,
the recent additions of log parsers and techniques, such as searching compressed data,
need to be included.

A systematic approach is chosen because identifying literature related to a specific
subject without a systematic approach is prone to bias. It also helps to structure the
literature investigation to identify literature specifically relevant to a topic. Furthermore,

21

3 Concept

it encourages to search more thoroughly. Systematic research identifies, evaluates, and
interprets literature to research a subject. In particular to answer specific research
questions located in that field. This SLR is systematic because a process is defined
that conforms to the three phases described in [11]. The three phases are planning,
conducting, and reporting a SLR.

3.1.2 Review Planning

The planning phase includes the following stages [11]:

• Identification of the need for a review

• Specifying the research question(s)

• Developing a review protocol

• Evaluating the review protocol

The following sections define the review protocol, which is one stage of the planning
phase, also present an overview of the found literature as shown in Figure 3.1.3 on
page 26. Furthermore, the SLR is conducted, and the results are the basis for the
following chapters. The development of the review protocol consists of the description
of the following section, including how literature is searched, analyzed, and the results
published. The methodology is evaluated with a peer–review.

Study Selection

The keywords are derived from the research objects and questions and the information
of the initially identified research literature.

Therefore, the following criteria were introduced when constructing the query:

1. The process of searching specific data in compressed log data is an important
aspect for the paper’s authors

2. The result set needs to be manageable in the context of this thesis (no more than
150 papers returned)

3. The fact of searching compressed log data must be explicitly highlighted by the
authors of this paper

The results served as the starter set for further investigation.

22

3.1 Identification of Parsing, Compression and Query Strategies

Figure 3.1: The number of literature returned by the query on IEEE Xplore before
applying the inclusion and exclusion criteria.

Snowballing

There are two kinds of snowballing methods. These are backward and forward snow-
balling. Forwards snowballing refers to identifying new literature based on the citation of
the examined literature. Backward snowballing refers to identifying new literature based
on the reference list of the examined literature. This thesis uses forward snowballing to
identify relevant literature further, to ensure to find the most recent publications. The
examined literature in the starter set is in the final analysis set. The references in the
examined literature in the starter set are used to add potentially relevant new literature
that undergoes the same selection process. This procedure is iterative. The snowballing
process ends as soon as all relevant literature is found, and therefore, no new literature
can be determined to enter the iteration. This results in the final set for the analysis.

Inclusion Criteria

The inclusion criteria of this review were driven by research questions R1 and R2. R1
focuses on techniques that exploit the redundant structure of log data to maximize storage
reduction while still allowing the searchability of compressed data. R2 focuses on the
effects of compression on post-storage processabilities, such as the ability to decompress
and retrieve a subset of data for analysis. Literature that describes log parsing or log
compression techniques was considered for inclusion, particularly emphasizing those
enabling searching through compressed data. If any findings on the effects of compression

23

3 Concept

on processability were presented in the paper, they were also included to answer R2.
The inclusion limit for literature was from 2003 to 2023, covering the most significant
interest in log compression as shown in Figure 3.1.2 on page 22. All literature considered
for inclusion was required to be available in full text.

Exclusion Criteria

The scope of this review is limited by focusing on primary studies written in English.
Research literature that focuses on audio and video logs is also excluded, leading to
a focus on log data generated by system, first-party, and third-party applications.
Moreover, literature focusing solely on fault or anomaly detection based on log analysis
is excluded because they often lack technical details about the parsing and, if present,
compression techniques.

Investigation of Literature

The review’s literature source was IEEE Xplore. The search was complemented with
dblp.

The three defined criteria were considered in constructing the database search query.
The first criterion was fulfilled by defining that log must be part of the paper title. The
term log is ambiguous. It is used as a term for a chunk of wood and in math with
usage in different contexts. This ambiguity required adding search terms relating to
compression algorithms or terms narrowing down to processing log data to reduce used
storage. This results in ("Document Title":Log) AND ("All Metadata":log compression)
OR ("All Metadata":compressed log). The search was further refined, and the emphasis
on searching through logs was included because the number of resulting literature had
exceeded the amount defined in criterion (2). This refinement resulted in adding OR
("Author Keywords":log search). Criterion (3) was addressed by adding author keyword
conditions, assuming they reflected the authors’ intention to describe log compression
techniques. This resulted in the following search query for IEEE Xplore:

1 ("Document Title":Log)

2 AND ("All Metadata":log compression)

3 OR ("Author Keywords":log abstraction)

4 OR ("Author Keywords":log parsing)

5 OR ("Author Keywords":log search)

6 OR ("Author Keywords":log reduction)

7 AND ("All Metadata":compressed log)

Listing 3.1: IEEE Xplore database query

24

3.1 Identification of Parsing, Compression and Query Strategies

Dblp was also included to diversify the sources. The criteria still applied, but the resulting
search query differed because of different search capabilities. Spaces represented AND
statements, and | represented OR statements. Furthermore, the search needed to
be more strict, otherwise the results were unmanageable and therefore contradicting
criterion (2). This led to defining the most relevant and most commonly found keywords
in the dblp query. The dblp search query was as follows:

1 log compression|compressed search|query

Listing 3.2: dblp database query

Assessment of Quality

Constructing a query that returns only relevant literature is unlikely. After defining
inclusion and exclusion criteria, a quality assessment must be performed based on the
previously defined query construction criteria.

1. Whether the title is related to the research questions?

2. Does the abstract describe log compression, log parsing, or searching compressed
log data?

3. Whether the content describes a technique for either log compression, log parsing,
or performing a search on compressed log data?

The result of the assessment is either Yes or No. The assessment is performed consecu-
tively. For each consecutively performed step, the question must result in a ’Yes’ to
show that the paper is relevant to this thesis.

Data Analysis

After the quality assessment, a definition of the data extraction strategy is provided.
The goal is to extract relevant data to answer the research questions.

1. Technique that is applied

2. Aim of the paper

3. Analysis of the parsing, compression, or search techniques

This data extraction strategy serves as a guideline for working through each study.

25

3 Concept

3.1.3 Study Selection

The selection process is depicted in Figure 3.1.3. The trend of increasing literature over
time in the defined scope is illustrated in Figure 3.1.3.

Figure 3.2: The selection process of the conducted SLR

3.1.4 Results

In recent years, an increasing amount of research has been conducted in the field of
log data processing, as shown in Section 3.1 on page 21 on page 13. The examined
publications can be categorized into three domains: (1) Log template extraction, which
involves parsing the raw log messages into structured data for further processing; (2)
Log compression, which utilizes the extracted templates to implement log–specific
compression techniques that enable data reduction; Furthermore, (3) Querying the
compressed data, where the search phrase is analyzed and used to find matching
entries in the compressed data. The research presented herein introduces a series of
tools, concepts, and techniques aimed at addressing the challenges associated with log
template extraction, log compression, and querying of compressed data. These tools are

26

3.1 Identification of Parsing, Compression and Query Strategies

Figure 3.3: The number of literature in the final set after applying all criteria

interdependent, with those falling under the (3) domain utilizing techniques from both
the (1) and (2) domains.

It is defined that the complete process of exploiting the structure of log data to achieve
queryable and compressed log data requires the integration of these three domains. This
comprehensive summary of existing research serves as the basis for addressing research
questions R1 and R2.

Log Template Extraction

Log template extraction is by far the most widely researched area in the literature
taken into account. Starting with an early application of template extraction, SLCT
[45] is also one of the most present. The three–step algorithm starts by constructing a
summary of the dataset by applying frequency analysis. The encountered tokens and
their corresponding position and occurrence count are recorded during this process. A
token is considered frequent if its occurrence exceeds a user-defined percentage threshold
relative to the number of log records. In the second step, cluster candidates are identified
by iterating over the dataset again. Again, each log record is inspected, and the token at
each position is checked to determine if it is a frequent token. Log records that contain
such tokens are used to construct the candidate and are tracked in a table, incrementing
their occurrence count. A candidate is selected and reported as a template if the count
again exceeds the threshold, and the tokens of the template that are not considered
frequent are replaced with a wildcard.

27

3 Concept

LenMa [46] uses a clustering approach that analyzes the length of each token log record.
A new cluster is created if the sequence of token lengths is absent or inserted into an
existing cluster if the sequence is known. The cluster is represented as a vector of token
lengths and a vector of tokens. A variable is identified if the cluster word vector at a
given position differs from the word vector identified as part of that cluster based on a
cosine similarity score. Cosine similarity is an algorithm that calculates the similarity
between two vectors.

LogMine [47] uses a clustering approach that is based on a custom similarity score. The
algorithm starts by identifying the initial clusters, which are constructed by calculating
the score of new records with a cluster representative. The first iteration uses the
preprocessing to abstract tokens to token types if possible. The types are defined by
the user. If the score is smaller than a cluster’s continuously updated max score, then
it is inserted into that cluster. If no fitting cluster can be identified, a new cluster is
formed. This approach is then iteratively used to identify similar templates within a
cluster and merge them.

LogSig [48] is basically an optimization algorithm for sequences of tokens tailored to log
data. Each line is tokenized, and pairs of tokens are constructed. A fixed user–defined
number of clusters is randomly filled with the list of pairs. The algorithm optimizes
groups by moving log records, their common pairs, to different groups. A higher score
indicates a better group. It tries every movement and evaluates the overall clustering
quality each movement would result in. The algorithm then commits to the best
improvement change.

Log Key Extraction (LKE) [49] uses A divisive hierarchical clustering algorithm. A
divisive hierarchical clustering algorithm starts with very broad clusters, i.e., one or two
clusters, and iteratively splits them into more differentiated clusters. Their clustering
approach uses a weighted string edit distance as a similarity metric between two log
records. A weighted string edit distance is a metric that measures how many operations
would be needed to get from one string to another. The weight is meant to emphasize
tokens that occur later in the sequence. Fu et al. argue that developers tend to place
variables at the end of log messages. Initially, preprocessed sequences of tokens are put
into two groups. The iterative group splitting measures a score for a given token for
each token across all records in the group. The token with the smallest score decides
whether further splitting is needed. This decision is made by comparing this score with
a threshold.

Jiang et al. introduced AEL [50], an approach to the log template extraction problem.
They define the anonymization step as the replacement of tokens based on heuristics.
Their heuristic rule is defined as tokens that follow an equal sign are considered dynamic
tokens. They define the tokenization step as a technique to group logs using a clustering

28

3.1 Identification of Parsing, Compression and Query Strategies

technique. Specifically, the tokens were counted to determine the bin in which the log
entry belongs.

SHISO [51] presents a log parsing algorithm, which is one of the earliest design for
an online parser, e.g., able to handle stream–like data. The algorithm that consists
of two phases. The first phase tries to look up an existing log template for a given
incoming log record. To do so, it splits the incoming log record into a list of words. The
words–boundaries are defined by delimiters. Each log record is then put as a node into
a tree–structure, if two nodes are similar, determined by threshold, a merge is induces,
which is defined as second phase. The second phase is responsible for adjusting existing
log templates. It utilizes n–grams to determine the next best candidate for a template
merge.

IPLoM [52] is an iterative partition log parsing algorithm. That means it iterativly
performs four steps that lead to a finer partitions. The steps perform partition by token
count, token position, search for bijection and finally the discovery of log templates. It
uses four parameters, which is high count relative to other techniques.

Nagappan and Voulk expanded on the approach above by improving the used SLCT
algorithm, introducing the tool LFA [53]. They employed frequency tables to identify the
wildcards, which required parsing the logfiles twice. During the first run, they created
a pre–built frequency table. During the second run, they utilized the frequency table
to look up the frequencies of tokens, which enabled them to determine the wildcards.
The authors defined clusters using the identified token frequencies within a log line.
Consequently, they combined clustering and heuristic techniques. This approach is a
recurring trend in efforts to improve performance metrics, such as accuracy, robustness,
and efficiency.

Zhu et al. [10] published this set of performance metrics for log parsers, along with a
benchmark that serves as the de facto standard for exemplary log data used in research.

Drain [14] is one of the most prominent log parser publications and is often used as
a baseline for comparison by other parsers. It provides an interface to define regular
expressions used to preprocess log lines and identify the most frequent log patterns.
Drain utilizes a fixed–depth tree structure to represent log messages and efficiently
extracts common templates. The constructed tree describes the root, internal, and leaf
nodes. Internal nodes represent heuristic rules, such as the count of tokens followed by
specific tokens. Leaf nodes represent log groups, which encompass templates and IDs.
IDs function as identifiers for specific log events. Dynamic variables are tokens containing
digits and are replaced by wildcards. The tree structure allows for an online approach
since it is continually updated. This approach is made possible by the heuristics that
leverage the unique characteristics of logs.

29

3 Concept

MoLFI [54] uses a more unconventional heuristic approach. The authors define the log
template extraction problem as a multi–objective optimization problem that aims to
balance two competing objectives: frequency and specificity. The goal is to identify a
template that matches the maximum number of log messages while maintaining the
highest specificity level possible. As such, they utilize a contextualized Non–dominated
Sorting Genetic Algorithm II (NSGA–II) to tackle this multi–objective optimization
problem.

POP [3] utilizes recursive partitioning, which partitions the log messages based on their
length into groups and further partitions them into subgroups by static parts. Once
the partitioning reaches a certain level of completeness, the templates are constructed.
However, POP still necessitates predefined regular expressions to identify dynamic
tokens.

To develop a log filtering system for log data, Delog [55] implements a log parsing
technique that groups similar logs into initial blocks. These blocks are then verified
using the LCS algorithm. A variation of the Multiple Sequence Alignment algorithm
generates an alignment matrix, which is then reduced to a single pattern. This process
is repeated iteratively until the resulting patterns are stable. However, parameters such
as the Jaccard threshold must be appropriately tuned for optimal performance.

Logan [56] is an online log parsing technique that uses LCS and a tolerance threshold to
identify log templates. It performs periodic merges to eliminate duplicates and identify
missed dynamic tokens. The architecture of Logan is similar to that of POP in that it
uses Spark for distributed computation.

Spell [19] employs LCS to identify log templates based on the assumption that log
entries with a common sequence are likely to share a common log template. The
dynamic variables are stored in a list associated with the log entry. LCS is combined
with backtracking, and once two log entries differ, a wildcard is inserted. If tokens do
not differ, it can be assumed that they are static and, therefore, part of the template.
Additionally, Spell uses a prefix–tree to enable online processing.

Logram [57] utilizes n–grams to identify similarities between log events. The approach
assumes that frequent n–grams represent static tokens, while rare n–grams represent
dynamic tokens. Logram automatically determines the threshold that separates static
and dynamic tokens.

LPV [58] implements an Natural Language Processing (NLP) algorithm, word2vec,
to extract log templates by generating a vector representation of each token in a log
message. The log entry vector is constructed by summing up the token vectors and is
used to cluster and categorize incoming log messages in the online phase.

30

3.1 Identification of Parsing, Compression and Query Strategies

Paddy [59] introduces an online parsing technique that uses a dictionary to store
inverted indices mapping static tokens to their log templates. Paddy provides an
interface for defining dynamic tokens as regular expressions. The found dynamic tokens
are replaced by wildcards. However, it does not provide information on the location of
the replaced variables, leading to potential information loss and making it unsuitable
for log compression.

METING [60] is an offline log parser that, like Logram, uses n–grams to identify
similarities between log events. However, instead of directly clustering logs, it builds a
dendrogram, a tree-like data structure inspired by hierarchical clustering techniques.
The closer two nodes are in the tree identified by distance, the more similar they are.

The USTEP [61] log parser, which employs a prefix–tree data structure for real–time
processing, shares similar characteristics regarding its data structure, assumptions,
and algorithms with Drain. It uses preprocessing to remove common variables such
as IP addresses, file paths, and URLs. USTEP assumes that log messages with the
same templates always have the same number of tokens, a limitation similar to that
of Drain. No information is provided about separators, but it can be assumed that
a simple separation rule is applied, which is also a limitation similar to Drain. The
paper introduces a distributed architecture by adding a ‘monitoring instance in charge
of standardizing knowledge, and divide saturated leaves’ [61].

QuickLogS [62] is an offline log parser that uses the Hamming distance and cosine
similarity algorithm for template merging. Partitioning is based on the number of
tokens, which introduces a strong assumption similar to Drain. An interesting feature
of QuickLogS is its use of hashed values to represent high–dimensional vectors, such as
template vectors.

LogPunk [63] is a parser that utilizes punctuation marks to determine a log template
signature and uses clustering techniques to group templates based on these signatures.
One of the challenges that LogPunk faces is generating a punctuation table, a list of
delimiters. The authors suggest that automatically generating such a table for unknown
log data would be desirable.

Prefix–Graph [64] is an online log parser that utilizes a prefix graph to merge nodes,
forming templates by traversing to a leaf node. Each edge in Prefix–Graph contains
a static or dynamic value that is part of a complete template. Like LPV and others,
Prefix–Graph uses a vector–based similarity comparison of tokens to determine whether
a merge should be performed once a certain threshold is reached.

Linnaeus [65] is a machine learning–based log classification pipeline presented by the
authors. The paper focuses primarily on the architecture and industrial case study

31

3 Concept

of Ericsson’s CI pipeline, with less emphasis on the technical details of the parsing
technique employed.

ULP [22] is an offline log parser. The technique used in this method is to leverage
the frequency of words to differentiate between static and dynamic tokens in logs.
Preprocessing is done to remove common dynamic tokens. Similar log events are
grouped before applying local frequency analysis to identify dynamic tokens better.

Decker presents a method for online log parsing called eLP [66], which uses intervals
instead of absolute positions to tolerate variations in word positions. This is a machine
learning technique that uses a combination of decision trees and interval–based clas-
sification. The method creates a grammar based on log events and forms a vector of
tokens to classify related events. Preprocessing removes common dynamic tokens, and
grouping similar log events before applying frequency analysis helps identify templates.

SPINE [67] is an online log parser that uses various techniques and data structures such
as a prefix–tree, partitioning, deduplication, preprocessing, and parallelization. One
unique aspect of SPINE is using a novel method of manual user feedback to determine
whether a leaf node in the prefix–tree should be further partitioned into sub–nodes. This
manual feedback, usually once a week or month, helps to improve the online partitioning
of log messages and enables the parser to respond effectively to evolving log events.

Drain+[68] was developed as an improved version of existing state–of–the–art parsers,
which were found to perform poorly when applied to an industrial environment. The
unsatisfying effectiveness was attributed to their inability to handle variable lengths of
log entries and their reliance on only static and basic separators. A limitation that has
already been identified for Drain. To address these limitations, Drain+ incorporates
two additional components – Separator Generation and Template Merging – which
resulted in significant improvements in parsing effectiveness for private log data, and
marginal improvements for public log data. Hence, Drain+ was created as an enhanced
alternative to Drain.

PatCluster [15] utilizes frequency analysis to construct a tree–based data structure. The
nodes in the tree correspond to token frequencies, with those closest to the root having
higher frequencies than those further away. The root node is continuously updated and
represents a single, mined template. The tree’s depth is adjustable. The depth affects
how well the algorithm performs and can detect rare patterns. PatCluster is an offline
parser.

The Multi–layer Parser (ML–Parser) [69] is an approach that combines coarse and
fine–grained techniques to extract templates from log data. The ML parser combines
techniques, including Jaccard Distance, Hamming Distance, Longest Common Subse-
quence, Inverted Index, and Prefix–Tree, to achieve this goal. It operates on multiple

32

3.1 Identification of Parsing, Compression and Query Strategies

layers, where each layer performs more processing than the previous one, allowing it to
identify finer–grained templates.

Log Compression

LogDAC [16] is a log compression technique designed to enable more effective compression
of log files using general compression tools, such as LZMA or gzip. The approach
differentiates between three data types: text, numerical, and dictionary. To handle
these types more efficiently, the numerical type is divided into subgroups such as small
integers, large integers, small decimals, and simple mixed data like file sizes. Then
elastic encoding is applied. LogDAC researchers have found that the underlying parsing
technique does not significantly affect the compression ratio. Therefore, they chose to
use Drain because it balances efficiency and accuracy.

Cowic [70] introduced a dictionary–based compression technique that operates on
structured logs, with each token being associated with a dictionary. The approach
is demonstrated by using an Apache access log with a small size of templates in its
content. This content, for example, includes URLs that can be efficiently categorized
using phrases, a data model combining tokens representing a pattern. The technique
allows for searching on compressed data using an inverted index, decompressing relevant
log lines as needed. Cowic operates on structured log data.

MLC [28] utilizes CDC, to cluster log entries into buckets. Each bucket consists of log
entries that are similar to each other. The Jaccard distance, is then used to compare
chunks in a cluster with the chunks of an incoming log record. If they the distance
conforms to a threshold the log record is assigned to that cluster, else a new cluster is
created. MLC employs delta encoding, which captures only the changes between two
log entries, again utilizing chunks and jaccard distance. MLC operates on structured
log data.

LogZip [17] preprocesses log events by identifying commonly occurring dynamic tokens,
such as timestamp and log level, using regular expressions that can be defined through
an interface. LogZip then iteratively creates log templates based on a sample of the log
events and attempts to match each log entry with these templates. If no match is found,
the log event generates a new template. LogZip employs a prefix–tree to represent
these templates, similar to Drain. Compression and decompression are achieved by
representing the templates and variables as dictionaries and using dictionary mappings
to restore the original log event, similar to CLP.

33

3 Concept

Querying Compressed Log Data

CLP [23] is a lossless compression technique for unstructured log data that allows for
searching on compressed data by specifying a search phrase. The compression process
involves tokenizing a log line, extracting dynamic tokens, and storing them in a variable
dictionary. Log templates are stored in a separate log–type dictionary. When performing
a search, CLP applies the same tokenization and dictionary mapping process to the
search phrase and searches through the dictionaries to find matching log lines. Only
the matching log lines are decompressed and returned.

LogParse [18] introduces an online log parsing technique that generalizes the template
extraction process and assumes an adequate offline technique is applicable for building
the initial template set using historical logs as input. To accomplish this, LogParse
utilizes a prefix–tree data structure where a node represents each unique token in the
template set, and a root–to–leaf path forms a template. LogParse defines the problem
of updating a template as a word classification problem, where an unknown log event
is divided into static and dynamic words. LogParse assumes that similarities between
existing and newly arrived templates indicate a potential relationship that can be used
to update existing templates with additional information from the unknown templates.
To solve this problem, LogParse uses Support Vector Machines (SVM), which are
supervised learning models with associated learning algorithms. LogParse applies this
technique to log compression and is able to search the data, although it is not further
described whether it decompresses the whole data or single entries.

3.1.5 Discussion

The results show a brief summary of the latest advancements in log template extraction,
log compression, and querying compressed log data techniques. Log template extraction
has progressed from basic rule-based approaches to more complex machine learning-based
strategies. This results in improved handling of unstructured log data. The improved
template extraction techniques are a significant driver for more efficient log compressors.
The addition, enabling search on compressed data eases the log analysis and handling of
log compressed log data. In contrast to the previously used general-purpose compression,
which requires complete decompression of the entire archive, log compression formats
facilitating partial decompression provide enhanced usability in log analysis through a
faster querying process.

Few real–world applications for compression combined with partial decompression in
the context of log data are known so far. CLP refers to it as ‘archivalytics’ [23].
These approaches could enhance the efficiency of log analysis and cut costs for storage.

34

3.2 Design Method

However, a significant application is made by Uber. They report a ‘169x compression
ratio’ of their log data by integrating CLP into their log4j logging framework and this
new process into their logging pipeline [4]. Having more data available enabled far more
sophisticated analytics. To further elaborate on the scale of improvement and benefits
of integrating such tools, Uber reported that storing logs with a retention policy of
three days would cost them 180.000$ per year. With a retention policy of one month,
this would increase to 1.8$ million dollars per year. Integrating advanced compression
techniques resulted in 10.000$ per year with a monthly retention policy, cutting costs
by over 99% [4].

In conclusion, advancements in the techniques presented in the three problem domains
have improved the performance of tasks needed that enable log data analysis. As
modern systems grow in complexity and scale, ongoing research in these areas is crucial
to develop even more efficient, accurate, and adaptive methods for log data management.
One major problem of current log parsers are the identification of dynamic tokens
consisting only of alphabetical characters and how this further affects log analysis, such
as compression techniques [10].

3.2 Design Method

This section summarizes the relevant concepts of Design Science Methodology [12] for
information systems and software engineering for the design process of the presented
tool. Additionally, the practical approach, or the method for applying this methodology,
is described.

Methodology Description

Design Science in software engineering is an approach to software development that
focuses on creating new treatments to address specific problems or needs. It involves a
systematic and iterative process of designing, building, and evaluating software artifacts
intended to either contribute to new knowledge in the field or improve a specific context.
Two primary activities need to be carried out: designing and investigating. Both
activities seek to address improvement problems: design problems and knowledge
questions. Design problems require a change in the real world, and thus it is essential to
consider the goals of stakeholders when designing treatments. In this context, a solution
itself is a design, and there may be many possible treatments to a given problem, all of
which aim to fulfill and are measured by the defined requirements.

35

3 Concept

On the other hand, knowledge questions aim to understand reality as it currently exists
without requiring any changes. In this case, there is typically assumed to be only one
correct answer, evaluated based on their correctness according to established criteria
and standards within the field.

In both cases, design science methodology aims to develop effective treatments for
improvement problems, whether by designing new artifacts or generating new knowl-
edge. By studying the interaction between artifacts and their contexts, design science
methodology seeks to identify contextually–appropriate treatments that address the
needs and goals of stakeholders while also contributing to the field’s knowledge base.
Knowledge and design are intertwined, and addressing one problem may lead to new
challenges in the other.

Design Science Research Projects

Figure 3.4: The engineering cycle, as proposed by Roel Wieringa in ‘Design Science
Methodology for Information Systems and Software Engineering’ [12]

Design science projects operate within two types of contexts: social and knowledge.
The social context includes stakeholders who impact or are impacted by the project. In
contrast, the knowledge context encompasses various sources of information, such as
specifications, common sense, natural science, design science, and other relevant facts.
The design science project bundles the social and knowledge context, stakeholder goals,
and the design and investigation cycle, which consists of subtasks shown in Figure 3.4.
The figure illustrates the relationship between all the elements and the iterative nature
of the process. When designing and investigating an artifact in a project, requirements
must be defined as a direction of expected functionality. A template can be used to
identify all the necessary elements, which in turn form a technical research question [12]:

‘How to <(re)design an artifact>
that satisfies <requirements>
so that <stakeholder goals can be achieved>
in <problem context>’ [12]

36

3.3 Problem Statement

3.3 Problem Statement

This section presents a formalization of the variable template extraction problem, along
with a discussion on its relevance, research questions, and a requirements analysis.

3.3.1 From Messy to Meaningful: The Need of Parsing Log Data

One challenge that often comes up with logs is the desire to summarize or aggregate
similar instances. The aggregation of information can have different directions. One
direction is to process the logs to help humans understand their content and contextualize
the data. This is often called log analysis. Another direction is to efficiently represent
log data. This can be archived by transforming the log events into a more appropriate
format or structure. This is called log compression, which includes parsing the log data.

The explanation of the challenge and the associated problem will be approached by
presenting a reasonable model of the life cycle of logs as described by D. Jaglowski
(personal communication, 28.09.2022):

1. Logs are generated by an application

2. "Collected" by a collector (either pushed directly from the application or written
to a medium that a collector can pull from)

3. (Optionally) processed by the collector

4. Sent to a backend (such as a SaaS observability application or in–house monitoring
application)

5. (Optionally) processed by the backend

6. Stored by the backend

7. Retrieved from storage (for a variety of reasons, but often for presentation to a
user)

Parsing techniques can be applied during steps (3) and (5), and can prove useful to
steps (4), (6) and (7), as these techniques can be directed towards various problem
domains.

These problem domains are:

1. Storage

37

3 Concept

2. Transmission

3. Analysis

Storage

The accumulation of log data generated by any system can require a substantial amount
of storage capacity. Log retention policies are typically employed as the primary
approach to managing this. However, such policies restrict using a valuable data source
for analytics, as the data is only available within a predetermined time frame. Analyzing
trends over a period exceeding the retention policy’s duration is difficult. Archiving the
data and reducing the amount of storage used can effectively gain a more comprehensive
understanding of system behavior by preserving the relevant data for an extended
period.

Transmission

Data transmission, particularly with cloud providers, involves costs, especially for
outbound data transmission (egress), which can be expensive. While uploading data
(ingress) to cloud provider storage is generally free, egress is not free. For instance,
Amazon Web Services (AWS) egress costs are usually in the range of $0.08–$0.12 per GB,
excluding the free tier [71]. Comparatively, Google Cloud (GC) egress costs typically
range between $0.08–$0.22 per GB [72]. The total log data generated and transmitted
varies significantly depending on the organization, and thus, no assumptions can be
made regarding the overall log volume and costs.

Analysis

Aggregating data has an immediate impact on the possibilities of representation. By
not aggregating at all, having every piece of information available allows the analyst
to shape the data in every desirable way. Aggregating the data beforehand limits the
representation. This is caused by reducing the overall data set and storing it in a
specific way. On the other hand, precisely aggregated data reduces the possibility of
visualizing unnecessary data. One common issue encountered is alert fatigue, where
the data visualized is often employed in alerting systems. If all data is visible, it is
harder to determine what data matters. The ideal way to visualize log data would be
to present it in a format that makes it effortless to identify good decisions and take the
appropriate actions while making it challenging to make bad decisions.

38

3.3 Problem Statement

It is also helpful to know that there were three occurrences of this log type and the set
of obfuscated values. This aggregation strategy would affect the visualization because
three unique events are merged into one, with enriched information.

There are different types of aggregation functions. In the following case, an example
usage of log template extraction and of a sum aggregation function grouped over time
is given:

1 Time: 12:00 "Info: Sold item for 1$"

2 Time: 12:05 "Info: Sold item for 10$"

3 Time: 12:09 "Info: Sold item for 100$"

Listing 3.3: Unprocessed exemplary log messages

1 Starting Time: 12:00

2 End Time: 12:09

3 sum: 110$

4 msg: "Info: Sold item for {}"

Listing 3.4: Aggregation based on the exemplary log messages

Aggregation functions are used to summarize data and provide useful insights. In the
context of this work, several aggregation functions that may be useful for analyzing log
data have been identified. These include:

List of possible aggregation functions:

1. Average: Used to calculate the mean value of a numerical data set.

2. Count: Used to count the number of events or occurrences.

3. Count distinct values: Used to count the unique values in a dataset.

4. Earliest event based on timestamp: Used to identify the earliest event in a dataset
based on timestamp information.

5. List of all captured values: Used to produce a list of all the values captured in a
dataset.

6. Maximum: Used to identify the highest value in a dataset.

7. Minimum: Used to identify the lowest value in a dataset.

8. Median: Used to identify the median value in a dataset.

9. The most frequent value or the N most frequent: Used to identify the most
commonly occurring value(s) in a dataset.

39

3 Concept

10. Events per second: Used to calculate the rate at which events occur in a dataset.

11. Percentile value: Used to identify the value below which a certain percentage of
the data falls.

12. Additional statistical aggregation functions (e.g., stdev): Used to provide additional
statistical insights into the data.

It should be noted that the aggregation process involves grouping selected fields derived
from parsed and typed fields in the case of unstructured logs or using a specific key in
semi–structured logs. By applying these aggregation functions to log data, researchers
can gain valuable insights and identify patterns that would otherwise be difficult to
discern.

The presentation of several use cases and their associated problem domains underscores
the importance of parsing unstructured log messages into a structured and processable
format for log analysis or log compression.

3.3.2 The Variable Template Extraction Problems

The preceding discussion to structure unstructured data to make sense of it while also
aiming to improve the experience with log compression tools such as CLP requires
identifying the related design problems.

‘So being able to automatically and accurately identify variable patterns would
definitely help users to tune CLP’s compression.’ (K. Rodrigues, personal communi-
cation, 21.01.2023)

This leads to two design problems. These are based on the identification of the problem
domains while focusing on the storage domain:

Variable Template Extraction Problems (VTEP)
VTEP1 How to extract dynamic tokens from unstructured log data
VTEP2 How to generalize the representation of dynamic tokens

3.3.3 Requirements Derivation

This section outlines the challenges and the requirements derived from the defined
variable template extraction problems, combined with the knowledge gained from the
review.

40

3.3 Problem Statement

Log Template Extraction

Figure 3.5: An illustrative extraction of log templates which uses log entries from the
loghub Spark dataset [73]

The log template extraction problem involves improving the extraction of dynamic
tokens from unstructured log data by designing a log parser that outputs sets of strings.
These strings can be used to construct regular expressions that represent a generalization
of the parsed dynamic tokens. This approach removes the need for CLP users to craft
regular expressions using their domain knowledge manually. However, several challenges
must be addressed while designing such a system to approach VTEP1.

Firstly, unlike traditional log template extraction that replaces dynamic parts with
wildcards, the focus here is solely on the dynamic parts of the log message. Secondly,
the delimiters used in tokenization are static, and the context of the particular token is
important in deciding whether the token should be split further.

Finally, there is a need to consider both offline and online processing. Online processing is
preferable for real–time analysis, such as monitoring, where logs are frequently streamed
to a centralized machine and need to represent the state of the application or machine
as soon as possible. In contrast, offline processing can be used for batch processing,
where logs are stored temporarily, in a manageable size, and compressed later.

VTEP1.R1 Automatically Extract Patterns

If the extraction of templates can be done automatically
and accurately without requiring domain knowledge,
then the user is actively supported by reducing the amount of knowledge
and manual labor needed to use log compressors and can further automate
the process of log template extraction.

VTEP1.R2 Efficiently Extract Patterns

41

3 Concept

If the time–efficiency of template extraction is competitive with state–of–
the–art parsers
and assuming the parser is used in a different context
then the parser can be a valid and generally applicable alternative to state–
of–the–art parsers.

VTEP1.R3 Standalone Application

If the tool operates independently of the log compressors,
and assuming that the artifact is provided with an sample of the compressed
data,
then the artifact can be used as a standalone application to help users tune
log compressors by providing instant feedback in the form of data analysis
consisting of the extracted templates and variables.

VTEP1.R4 Accurately Extract Pattern

If the extraction of templates can be done accurately without requiring
domain knowledge,
and assuming the parser achieves high quality log templates, identifying
dynamic tokens
then then the output can be used for further analysis, such as variable
template generation for file compression.

Constructing Regular Expressions from Dynamic Tokens

The problem of representing and generalizing dynamic tokens in log messages, which
may include new tokens with similar patterns to existing ones, involves improving
the construction of regular expressions that log compressors use to identify complex
dictionary variables.

Identifying the set of variables that belong together is the first step to approaching this
problem. Given, as per VTEP.R1 assumed, that the templates are accurately extracted,
and the log record event can be identified, a set of variables that represent a specific
dynamic token is provided. Based on this set, a generalization in the form of a regular
expression is to be determined.

One challenge is the intersection between sets B1 and B2 encompassed by two regular ex-
pression, R1 and R2 respectively. For example, given the input sets A1 = {”a_1”, ”b_1”}
and A2 = {”a_1”, ”c_1”}, resulting in R1 = [a− b]_1 and R2 = (a|c)_1, there exists a
set of strings B1 ∩B2 = {”a_1”} for which the implications on the log compressor are
unknown.

42

3.4 Design for a Logparser and Regluar Expression Generator

The following requirements are derived from the problems statement for constructing
regular expressions:

VTEP2.R1 Construct Regular Expressions

If the algorithm can provide regular expressions based on a set of input
strings,
and assuming that the input strings are the dynamic tokens extracted and
clustered by the log template extraction algorithm,
then the algorithm contributes to the goal of reducing the required domain
knowledge and manual labor of the log compressor user.

VTEP2.R2 Generalization of Dynamic Tokens

If the algorithm can provide a generalization of the given set of input strings
and assuming that the resulting regular expression captures all unknown
dynamic tokens,
and assuming that the input strings are sampled from the whole data,
then the algorithm contributes to the goal of capturing unknown tokens,
which are part of the sample data and increasing the compression ratio of
the entire log data.

3.4 Design for a Logparser and Regluar Expression Generator

In this section, the research question R1 in Section 1.2 on page 2 and the technical
research questions proposed in Chapter 3.3.2 on page 40 are addressed.

In Section 3.4.1, the knowledge gained by conducting the SLR is used to provide a
foundation for a comprehensive summary of current log parsing techniques that is
required to answer R1 and to propose a design in following section.

In Section 3.4.2 on page 54, VTEP1 is addressed by proposing a log parser design
based on the knowledge obtained from the SLR. This design serves as the starting point
and therefore first iteration of the engineering cycle presented in 3.4 on page 36.

In Section 3.4.3 on page 55, a regular expression generator design is proposed to address
VTEP2.

3.4.1 Exploiting the Structure of Log Data

The research question is divided into smaller components in order to approach R1.

43

3 Concept

1. How can the structure of log data be exploited

2. to reduce storage requirements through compressing

3. while maintaining the ability to query the data

Starting with the first component, the source, life cycle, and structure of log messages are
analyzed to understand which techniques are applicable and why they are suitable. This
analysis is used to select, mix, and build upon existing techniques for the further design
process of the proposed approach. The entry points for log parsing are highlighted in the
log life cycle model presented in Section 3.3.1 on page 37. Log parsing typically occurs
after logs are collected at a (remote) collector or after they are sent to a centralized
backend. It has been stated by He et al. that ‘a crucial step of automated log analysis
is to parse semi–structured log messages into structured log events’ [74]. While this
statement is fundamentally true, it only captures part of the picture. The majority
of publications examined unstructured log data, which could be due to the use of a
very common benchmark and the corresponding provided test data presented in [10].
Describing logs as semi–structured might be too specific, as it does not encompass
unstructured log messages. The findings become more broadly applicable by focusing
on the most challenging case, which is unstructured log data. Leveraging the structure
of log messages becomes simpler as their structure is more specified, as some of the
work to structure unstructured data is already done.

The Structure of Log Data

The modeling of log data and analysis of its structure was initiated by investigating
the 16 log datasets presented in [10]. In doing so, the following characteristics were
identified in the samples. It should be noted that due to the large size of the entries, it
cannot be ensured that this is an exhaustive list of all characteristics, however, the list
serves the purpose of identifying commonalities.

• Timestamp: The date and time when the log message was generated.

• Log level: The severity of the log message (e.g., Error, Warning, Info, Debug).

• Source: The component, module, or subsystem that generated the log message.

• Process Identifier (PID) or Thread Identifier (TID): The identifier of the process
or thread that generated the log message.

• Message text: The actual log message describing the event or situation.

44

3.4 Design for a Logparser and Regluar Expression Generator

• Error code or Exception: If applicable, the specific error code or exception
associated with the log message.

• Contextual information: Additional information that provides context to the log
message, such as user ID, session ID, or request ID.

• File or function name: The file or function where the log message was generated.

• Line number: The line number in the code where the log message was generated.

Dataset Time-
stamp

Log
Level

Source Process Message
text

Error
Code

Contextual
informa-
tion

File or
function
name

Line
number

Android Yes Yes Yes Yes Yes No No No No
Apache Yes Yes Yes No Yes No No No No
BGL Yes Yes Yes No Yes No Yes No No
HDFS Yes Yes Yes Yes Yes No Yes No No
HPC Yes No Yes No Yes No Yes No No
Hadoop Yes Yes Yes Yes Yes No No No No
HealthApp Yes Yes Yes Yes Yes No No No No
Linux Yes No Yes Yes Yes No Yes No No
Mac Yes No Yes Yes Yes No No No No
OpenSSH Yes No Yes Yes Yes No Yes No No
OpenStack Yes Yes Yes Yes Yes No Yes No No
Proxifier Yes No Yes No Yes No Yes No No
Spark Yes Yes Yes No Yes No No No No
TB Yes No Yes Yes Yes No Yes No No
Windows Yes Yes Yes No Yes Yes No No No
Zookeeper Yes Yes Yes No Yes No Yes Yes Yes

Table 3.1: Log characteristics of 16 investigated datasets

Based on the observations made, it is evident that there is significant variation in
the structure and content of the log data samples analyzed. A common characteristic
found in each sample is the presence of timestamps, which are typically located at
the beginning of the log message, except for samples that follow the Syslog RFC 3164
format 1, where a Priority Facility Severity (PRI), a syslog specific severity attribute,
may precede the timestamp. The format of the timestamps themselves varies widely
across the samples, with some utilizing contextual formats that are difficult to interpret.

Another common characteristic present in each log message is a free–form plain text
message body. The content of these messages varies greatly across samples, with some
containing detailed information such as error codes or contextual information like user
or session IDs, while others provide only minimal context.

The following log data samples illustrate a wide spectrum of complexity in log message
structure. Each of which was also compared in [10] and supports the observations
presented.

1 Syslog RFC3164 https://datatracker.ietf.org/doc/html/rfc3164 [75]

45

3 Concept

For example, the Apache log can be considered relatively simple due to its small message
templates, which can be easily identified by many log parsers.

1 [Sun Dec 04 04:51:18 2005] [error] mod_jk child workerEnv in error state

6

2 [Sun Dec 04 04:51:37 2005] [notice] jk2_init() Found child 6736 in

scoreboard slot 10

Listing 3.5: Apache example log messages

In contrast, the Thunderbird log is of medium complexity, with diverse templates that
are difficult to parse due to the high number of tokens in each message.

1 - 1131567053 2005.11.09 tbird-admin1 Nov 9 12:10:53 local@tbird-admin1 /

apps/x86_64/system/ganglia-3.0.1/sbin/gmetad[1682]: data_thread() got

not answer from any [Thunderbird_A2] datasource

2 - 1131567053 2005.11.09 tbird-admin1 Nov 9 12:10:53 local@tbird-admin1 /

apps/x86_64/system/ganglia-3.0.1/sbin/gmetad[1682]: data_thread() got

not answer from any [Thunderbird_B5] datasource

3 - 1131567054 2005.11.09 tbird-admin1 Nov 9 12:10:54 local@tbird-admin1

gmetad: Warning: we failed to resolve data source name dn910 dn911

dn912 dn913 dn914 dn915 dn916 dn917 dn918 dn919 dn920 dn921 dn922

dn923 dn924 dn925 dn926 dn927 dn928 dn929 dn930 dn931 dn932 dn933

dn934 dn935 dn936 dn937 dn938 dn939 dn940 dn941 dn942 dn943 dn944

dn945 dn946 dn947 dn948 dn949 dn950 dn951 dn952 dn953 dn954 dn955

dn956 dn957 dn958 dn959 dn960 dn961 dn962 dn963 dn964 dn965 dn966

dn967 dn968 dn969 dn970 dn971 dn972 dn973 dn974 dn975 dn976 dn977

dn978 dn979 dn980 dn981 dn982 dn983 dn984 dn985 dn986 dn987 dn988

dn989 dn990 dn991 dn992 dn993 dn994 dn995 dn996 dn997 dn998 dn999

dn1000 dn1001 dn1002 dn1003 dn1004 dn1005 dn1006 dn1007 dn1008 dn1009

dn1010 dn1011 dn1012 dn1013 dn1014 dn1015 dn1016 dn1017 dn1018

dn1019 dn1020 dn1021 dn1022 dn1023 dn1024

Listing 3.6: Thunderbird example log messages

Lastly, the Linux log is highly complex, with poorly identified templates across all
investigated parsers, making it challenging to extract meaningful information from the
log messages.

1 Jul 3 23:16:09 combo ftpd[768]: connection from 62.99.164.82

(62.99.164.82.sh.interxion.inode.at) at Sun Jul 3 23:16:09 2005 .

2 Jul 5 13:36:37 combo sshd(pam_unix)[6560]: authentication failure;

logname= uid=0 euid=0 tty=NODEVssh ruser= rhost=210.229.150.228

Listing 3.7: Linux example log messages

The usage of log levels across the samples is inconsistent, with some using abbreviated or
full text representations for each level. When log levels are used, they generally conform

46

3.4 Design for a Logparser and Regluar Expression Generator

to the levels defined in the Syslog specification (RFC5424)1. Additionally, the source of
the log messages, which indicates the component, machine, or subsystem that generated
the log message, is usually included in each message, although this characteristic may
vary widely depending on the specific system or application.

In conclusion, despite the significant variation in the structure and content of the log
data samples analyzed, there are some commonalities that can be identified. These
commonalities provide a foundation for evaluating a log data model that accurately
represents the characteristics of this type of data.

The OpenTelemetry log data model specification is used to represent log data, and the
relevant parts are described accordingly, with observations made being related to the
model.

‘The purpose of the data model is to have a common understanding of what a log
record is, what data needs to be recorded, transferred, stored and interpreted by a
logging system’ [77].

OpenTelemetry is a significant initiative that aims to consolidate the collection and
analysis of observability data, including metrics, logs, and traces. By providing a unified
log data model, OpenTelemetry facilitates more efficient and standardized monitoring
and analysis of various log data sources.

OpenTelemetry’s log data model is designed to represent three types of log data: system
logs, where there is no control over the data format (e.g., syslog); third–party application
logs, where there is some control over the data format (e.g., Apache logs); and first–party
application logs, where there is full control over the data format. The log data model
defines a log message as a record containing two types of fields: named top–level fields
with specific types and meanings, and fields stored as key–value pairs that can represent
any data, potentially adhering to semantic conventions (e.g., syslog.facility for syslog
format) [77].

According to the specification, the named top–level fields include Timestamp, TraceId,
SpanId, TraceFlags, SeverityText, SeverityNumber, Name, Body, Resource, and At-
tributes. While all these fields are optional, they are generally expected to exist in
log data or be represented in the future. For instance, TraceId is included to provide
context information for easier correlation between observability data. OpenTelemetry’s
log data model provides a high flexibility, necessary considering the nature and history
of log data, and it is possible to map the investigated log samples to the log data model.

1 Syslog RFC5424 https://datatracker.ietf.org/doc/html/rfc5424 [76]

47

3 Concept

In the following example, the timestamp from the log message has been translated into
an ISO 8601 format that can be used in the JSON format. The "module" resource
has been derived from the log message. The severity has been set to "ERROR" with a
corresponding severity number of 3. The original log message has been preserved in the
"Body" field.

1 {

2 "Timestamp": "2005-12-04T04:51:18Z",

3 "Resource": {

4 "module": "mod_jk",

5 },

6 "SeverityText": "ERROR",

7 "SeverityNumber": 3,

8 "Body": "[Sun Dec 04 04:51:18 2005] [error] mod_jk child workerEnv in

error state 6"

9 }

Listing 3.8: Apache log message mapped to Opentelemetry data model in JSON
format

The analysis reveals a commonality between the examined data shown in Table 3.1
on page 45 and the log data model. The model is designed in a highly generalized
manner. In the investigated data, it has been observed that timestamps, sources, and
message texts are consistently present. Intuitively, one might have considered these
fields as required in a custom model. However, the OpenTelemetry model defines them
as optional. This finding aligns with the observation made in the analysis that log data
in an unstructured format exhibits significant variation, and it is not possible to assume
that certain fields will always be present.

In conclusion, it can be confirmed that the observed characteristics of the investigated
log data samples are compatible with the log data model specified by OpenTelemetry.
The model’s flexibility and optional fields align with the wide variation in log data
structure and content. Thus, the OpenTelemetry log data model’s definition of a log
record, as described in [77], is adopted. This model provides a foundation for parsing,
compressing, and querying log data while maintaining its ability to provide meaningful
context and insights.

Field Name Description
Timestamp Time when the event occurred.
TraceId Request trace id.
SpanId Request span id.
TraceFlags W3C trace flag.
SeverityText The severity text (also known as log

level).

48

3.4 Design for a Logparser and Regluar Expression Generator

SeverityNumber Numerical value of the severity.
Name Short event identifier.
Body The body of the log record.
Resource Describes the source of the log.
Attributes Additional information about the event.

Table 3.2: OpenTelemetry’s log data model as specified in [77]

Techniques to Exploit the Structure of Log Data

In Section 3.1 on page 21 three problem domains were identified. The techniques to
exploit the structure focuses on the log template extraction domain described in Section
3.1.4 on page 27. Log template extraction involves transforming raw, unstructured log
messages into structured and organized data for further processing.

The primary goal of log template extraction is to identify patterns and templates in log
messages, separate static and dynamic tokens, and provide a structured representation
that facilitates further analysis, such as log compression and querying.
Figure 3.6 shows the framework consisting of four steps: Preprocessing, Template
identification, Template extraction and Post–processing.

Figure 3.6: Log template extraction framework in offline mode

49

3 Concept

Preprocessing: In this step, raw log data is cleaned and prepared for extraction. This may
involve removing irrelevant or redundant information, replacing common dynamic
tokens (such as IP addresses or timestamps) with placeholders or wildcards, and
tokenizing log messages into individual words or phrases.

Template identification: Various techniques are employed to identify templates and
patterns within the log data. These techniques include clustering [45, 53, 63],
evolutionary algorithms [54], heuristic methods [14], frequency analysis [22, 66],
LCS [19, 55, 56], n–grams [57, 60] or machine learning [65, 66].

Template extraction: Once the templates are identified, they are extracted and repre-
sented in a structured format. This may involve creating a tree or graph–based
data structure [14, 19, 60, 61] or constructing a vector representation [58, 62, 66].

Post–processing: After extracting the templates, some parsers may perform additional
processing to refine the results further. This can include merging similar templates,
eliminating duplicates, or optimizing the data structure for efficient querying or
compression.

There are two modes in which log data can be processed: offline and online mode.
In offline mode, the four steps of preprocessing, template identification, template
extraction, and postprocessing are performed once on the entire log file. The steps for
the offline processing are shown in Figure 3.6 on the preceding page where each step is
executed consecutively with a log file as input at the preprocessing step. For example,
by using a complete set of log data, the data model has access to all the necessary
information to build an optimal output for the given input, since no unknown elements
are expected. This is particularly useful for log compression, as offline mode allows for
a more comprehensive analysis of the log data, e.g. enabling complete identification of
templates, resulting in a more compact and efficient log file.

Figure 3.7: Log template extraction framework in online mode

50

3.4 Design for a Logparser and Regluar Expression Generator

On the other hand, in online mode, the same four steps are performed iteratively based
on a single log event that is part of a set of log messages, such as a log file or log stream.
This mode is suitable for real–time systems, where the processing steps are performed
continuously as new log events arrive. The steps for the online processing are shown
Figure 3.7 on the preceding page, where these steps are presented as a cycle with a
single log event as input at the preprocessing step. For example, by using each log
event, the data model can adapt and add new nodes and leaves to a prefix graph, which
enables the categorization of new and previously unknown log messages.

Log Data Compression

Log data compression techniques, as described in Section 3.1.4 on page 33, are essential
for efficient storage and transmission. Compression addresses the second part of R1.
Dictionary-based methods are the most common in the context of log data compression,
where queryability is a requirement [18, 23]. These techniques help reduce storage
costs and enhance transmission efficiency. In order to address the second component of
the research question, i.e., ‘to reduce storage requirements through compressing’, the
CLP approach is analyzed and described, representing the techniques applied in both
investigated papers that include compression and queryability [18, 23].

The CLP approach, detailed in section 2.1.2 of the CLP paper [23], compresses log
messages using a two–level variable dictionary. The first level maps each dictionary
variable schema to a unique ID, while the second level stores the actual variable values.
Non–dictionary variable values are stored directly in the encoded log message if they can

Figure 3.8: CLPs variable dictionary approach applied to production logs

51

3 Concept

be precisely encoded within 64 bits; otherwise, they are stored as dictionary variables
[23].

The first level dictionary schema is defined by either manual and domain–knowledge–
driven definitions, or as explored in this thesis and defined as the problem VTEP2 in
Section 3.3.2 on page 40.

The key observation is that the schema is manually provided and the essential
assumption is that the schema for the variable dictionary can be automatically
generated.

Figure 3.8 on the preceding page illustrates the relationship between a log message, the
first–level variable schema dictionary, and the second–level dictionary of actual values,
based on the CLP example applied to production logs [23]. Log messages consist of a
timestamp, a resource, a log level, and a body composed of key–value pairs.

Various value types exist within unstructured log messages, such as strings containing
only lower–case or upper–case letters, IP addresses, integers, and strings containing
a mixture of upper and lower–case letters and numbers. Deriving actual types is
non–trivial for unstructured log messages.

In the CLP paper, the authors explain that each value or variable has a schema
defined [23]. The log type represents the extracted templates and the encoding for
the variables. The type of the variable determines how it is stored. Variables use the
dictionary approach and encode their reference ID as a 64–bit value. Non–variables,
mostly floating–point values, are directly encoded as a 64–bit value. Both variables and
non–variables encoding are stored in order of their occurrence in the log message [23].

Lastly, the CLP paper describes the existence of a log type dictionary containing the
extracted log templates. Each value is encoded with a non–printable American Standard
Code for Information Interchange (ASCII) character. The resulting encoded log message
consists of a timestamp, the log type ID, and a list of variable reference IDs [23].

Searching Compressed Data

The final part of R1 is regarding searching compressed data. All investigated publications
that fulfill the three problem domains, similar to compression, use the dictionary based
approach. There are alternative ways of searching compressed data such as inverted
index, but since the focus is data compression this technique is suboptimal, because it
is commonly stated that they need a lot of storage space to function.

52

3.4 Design for a Logparser and Regluar Expression Generator

In Figure 3.9, illustrating the search process of CLP, the search process is initiated
by the input of the search phrase. The search phrase is tokenized, and variable values
are extracted. Subsequently, the log type is constructed, and the archive dictionaries
are searched for matching log types and variables. If no match is found, the process
ends. However, if a match is identified, the segments are searched for corresponding
encoded messages. The matched decoded messages are then output, concluding the
search process. Therefore the search and also the decompression are ‘generally a reversal
of the compression process’ [23].

In conclusion, the research question R1 can be answered by analyzing the structure of
log data and describing techniques for exploiting it. This is achieved by applying the
log template extraction framework presented in Figure 3.6 on page 49, which includes
preprocessing, template identification, template extraction, and post–processing to
extract templates and structure the data. By doing so, the structured data can be
more efficiently compressed and therefore stored and queried, addressing the storage
requirements and maintaining the ability to query the data.

1. The structure of log data was investigated by analyzing various log datasets,
identifying common characteristics, and mapping them to the OpenTelemetry log
data model.

Figure 3.9: CLPs process of querying compressed data

53

3 Concept

2. Techniques to exploit the structure of log data were explored, focusing on the log
template extraction domain. Various methods, including clustering, evolutionary
algorithms, heuristic methods, frequency analysis, LCS, n–grams, and machine
learning, can be employed to identify and extract log templates. These techniques
can be applied in both offline and online modes, depending on the requirements
of the system.

3. The CLP approach, which uses a two–level variable dictionary for log compression
by processing the extracted templates, was analyzed and described. This method
efficiently reduces storage requirements while preserving queryability.

This approach effectively addresses R1 by exploiting the structure of log data to reduce
storage requirements while maintaining the ability to query the data.

3.4.2 Parser Design

In this section, the design of a system capable of processing unstructured log data
effectively is specified. The system is designed to automatically identify and extract
dynamic tokens, incorporate preprocessing, and group similar log events for efficient
analysis. Additionally, the system is developed as a standalone application working
offline and providing a configuration mechanic for user–defined input and output settings.

1. Design an algorithm capable of automatically identifying and extracting dynamic
tokens from unstructured log data without the need for manual intervention or
domain knowledge.

2. Incorporate preprocessing of log events in the algorithm.

3. Include grouping of similar log events in the algorithm.

4. Perform group–based frequency analysis within the algorithm to identify dynamic
tokens.

5. Develop the system as a standalone application that can operate independently
of log compressors and provide data analysis based on extracted templates and
variables.

6. Implement a configuration mechanic that allows users to:

a) Specify the input file to read.

b) Define the output file or location for the extracted patterns.

54

3.4 Design for a Logparser and Regluar Expression Generator

7. Aim for an template extraction accuracy of 0.8 on average on all 16 sample log
data sets

8. Aim for a reasonable run time duration

The proposed design addresses the four defined requirements of VTEP1, thus effectively
answering the technical design question. The design outlines an algorithm that utilizes
the defined log template extraction framework, as illustrated in Figure 3.6 on page 49.
Preprocessing techniques are employed, such as identifying integers, floating–point
numbers, and IP addresses as dynamic tokens. Grouping and group–based frequency
analysis are used for token identification. By processing the groups, the resulting outputs
correspond to the template extraction process. No domain–specific assumptions or
manual intervention are required.

The runtime should be justifiable and appropriate, avoiding excessively long processing
times. By specifying that the system works independently of the CLP system and
defining it to run as a standalone Go application with a corresponding configuration
interface, the standalone requirement is fulfilled. The non–functional requirement of
accurate template extraction is covered by specifying a competitive accuracy of 0.8
based on the 16 sample log datasets.

As a result, it is believed that the proposed design provides a meaningful answer to
VTEP1, effectively addressing the requirements for automatic pattern extraction, ex-
traction efficiency, standalone application functionality, and accurate pattern extraction
without domain knowledge or manual labor. This approach supports users in their log
compression tasks and allows for further analysis using the output from the extraction
process.

3.4.3 Regex Generator Design

This section outlines the design of a regex generator system using various methods
and control functionalities. The algorithm is based on input sets of dynamic tokens
extracted from the previously defined log parser. Additionally, specifications are defined
that guide the first iteration by determine the minimization algorithm to use Hopcroft’
algorithm and specifies the Abstract Syntax Tree (AST) construction using Brzozowski
algebraic method [78, 79].

1. Design an algorithm that constructs regular expressions based on input sets of
dynamic tokens extracted by the log template extraction algorithm using the
following methods:

a) Represent tokens using a graph data structure.

55

3 Concept

b) Minimize the graph using Hopcroft’s algorithm.

c) Convert the minimized graph into an AST using Brzozowski algebraic method.

d) Translate the AST into regular expressions.

2. Implement a configuration mechanic that allows users to:

a) Control whether to generalize digits to a character class.

b) Control whether to generalize characters to a word class.

c) Specify whether the regular expression generation algorithms should be
parallelized.

The proposed design addresses the two defined requirements of VTEP2, thus effectively
answering the technical design question. The design outlines an algorithm that constructs
regular expressions based on the set of dynamic tokens, which are extracted in a
meaningful way by the previously specified log parser. Configuration options are
also specified, allowing control over the generalization of tokens. As generalization is
increased, the detection of unknown or out–of–context variables is improved. However,
this increase also raises the number of false positives and intersections.

As a result, it is believed that the proposed design provides a meaningful answer to
VTEP2. It addresses the need for abstracting dynamic tokens in a manner that enables
the CLP interface to interact with the results, effectively contributing to the goal of
reducing the required domain knowledge and manual labor of log compressor users, as
well as capturing unknown tokens and increasing the compression ratio of the entire log
data.

Combining these two components results to an pipes-and-filters architecture capable of
providing a support for CLP operators to fine–tune their configuration as illustrated in
Figure 3.10.

Figure 3.10: The architecture to generate regular expressions for the configuration files
of log compressors for identifying difficult dynamic tokens.

56

4 Implementation

Manually identifying and providing regular expressions to help the compression algorithm
identify dynamic tokens using domain knowledge is time–consuming. It is also hard
to adapt to changing log records, which requires reevaluating the provided regular
expressions. To overcome these challenges, this thesis presents the Variable Template
Extraction Parser (VTEP) and the Variable Template Extractor (VTE) to analyze and
understand the structure of the processed logs.

The design, as described in Chapter 3.4 on page 43, is based on the findings from
the analysis of commonly occurring interfaces of state–of–the–art log parsers and by
addressing common obstacles associated with these parsers. The primary goal is to
provide aid in configuring the CLP, a state–of–the–art log file compression, archive, and
analytics tool. This is achieved by parsing and giving structure to unstructured logs
and then using this to generate regular expressions generalizing the dynamic tokens.

4.1 Overview of the Implemented System

The implemented system consists of two main components: the VTEP and the VTE.
These components work together to facilitate the automatic identification and extraction
of log templates and dynamic tokens from unstructured log data and the generation of
corresponding regular expressions.

4.1.1 Variable Template Extraction Parser (VTEP)

The VTEP is designed to automatically process and analyze unstructured log data. It
identifies and extracts dynamic tokens without needing manual intervention or domain–
specific knowledge but can be fine–tuned with parameter optimization. The main
functions of the VTEP include preprocessing of log records, clustering of similar log
records, the group–based frequency analysis to identify dynamic tokens, and a merge
algorithm to detect purely alphabetical dynamic tokens. The VTEP also features a
configuration mechanism that allows users to specify whether the parsing algorithms
should be concurrent, which file to parse, where the output should be placed, which log

57

4 Implementation

file format is used, and which threshold should be set. The VTEP produces three types
of outputs:

• The set of extracted dynamic tokens that will serve as input for the VTE

• Extracted templates

• Original log file parsed to a semi–structured form

Therefore, VTEP implements the framework illustrated in Figure 3.6 on page 49.

4.1.2 Variable Template Extractor (VTE)

The VTE is responsible for constructing regular expressions based on the input sets
of dynamic tokens provided by the VTE. It employs a series of methods, such as
representing tokens using a graph data structure, minimizing the graph using Hopcroft’s
algorithm, converting the minimized graph into an AST using Brzozowski’s algebraic
method, and translating the AST into regular expressions. The VTE also features a
configuration mechanism that allows users to control the generalization of tokens.

4.2 Configuration

To address specification 7 of the parser design and specification 2 of the parser generator
design, the Config struct is defined. This definition encapsulates the log file path,
the output directory path, and runtime options that alter the resulting regex. It
also encapsulates the log file format, which the parser uses to differentiate between
contextually unimportant and important token sequences. The functionality is found
in the config package. The parser focuses on the Body of log records as defined in
the OpenTelemetry log data model specification in Section 3.4.1 on page 43. The
configuration is passed to VTE and VTEP.

UML class diagrams are usually used to model classes in an object–oriented programming
(OOP) paradigm. The Go language does not have such strict definitions of classes and
objects. In contrast to languages with more common OOP principles, such as Java or
C#, the class diagram shows an architectural overview. Go uses structs, similar to the
C programming language. A struct is displayed as a S with an aquamarine background.
A type is displayed as a T with an orange background. A primary data type with a
green background is displayed as a C. Private fields are displayed as a red rectangle
followed by the field name and the data type. Public fields are displayed as a green

58

4.2 Configuration

Figure 4.1: UML class diagram of VTE Configuration Struct

circle followed by the field name and the data type. The relationships follow the UML
standard.

59

4 Implementation

4.3 Variable Template Extraction Parser

In this section, the implementation of VTEP is described. The implementation details are
oriented towards the specification defined in 3.4 on page 43 and how the implementation
fulfills them.
The functionality is found in the parser package. VTEP is based on ULP, an approach
for parsing log files designed by Sedki et al. [22], improved and extended with a
specialized log line parser incorporating additional heuristic rules, a merge algorithm,
concurrency and a hash lookup. VTEP is a Go1 package that is part of the VTE
Command Line Interface (CLI) application written in Go.

The parser consists of three main components, which are Parser, LogGroup, Lo-
gRecord. The class diagram illustrated in Figure 4.2 on the next page shows each
component’s corresponding fields and a selection of relevant functions.

Specification (1): Design an algorithm capable of automatically identifying and extracting
dynamic tokens from unstructured log data without the need for manual intervention or
domain knowledge

This high–level specification encapsulates the complete parsing process. Figure 4.3 on
page 62 and Algorithm 1 on page 63 describe and illustrate the process. The parser
initiates the processing, i.e., extraction and identification of log files, with the Parse

function. The log file format is converted to a regular expression based on the provided
configuration to differentiate the log fields. This somewhat contradicts (1), as the parser
user must supply domain-specific knowledge, such as the log format. This is necessary
to enable comparability to other log parser benchmark results, which only investigate
the Body part of the log record. Each line is read, and a LogRecord is constructed.
The slice of log records is passed to extractTemplates function. This results in a slice
of LogGroups. Each LogGroup contains a clustered set of log records. Templates are
built using the tokens in the LogGroup’s representative. The representative is the first
element of the slice. Since all LogGroups in a cluster share the same length and sequence
of token types, the templates effectively abstract a group of log records. The log lines
are combined with their EventID and template. Finally, the log template extractions
and the log template identification files are saved to disk. The log template extraction
file contains all log templates, including the wildcards. The log template identification
file contains the parsed log file with its log event identification, i.e., the corresponding
log event ID and the template.

1 The Go Programming Language https://go.dev/ [80]

60

4.3 Variable Template Extraction Parser

Figure 4.2: UML class diagram ofVTEP

Specification (2): Incorporate preprocessing of log events in the algorithm

Preprocessing is commonly done by using regular expressions to identify specific types
of tokens considered dynamic tokens. VTEP employs a hand-crafted log body parser
that breaks down the sequence of tokens separated by whitespace into tokens or lexemes.
These tokens are the building blocks for all preceding operations, and their identification
is well–worth the time spent, considering their advantages in the template construction
and merging algorithm, such as the fast building of different token combinations and
token type checking between log records and their token sequences. Whitespaces split
the log body, and each resulting token is inspected with a regular expression. The
regular expression checks have a specific order, and the first matching one classifies the
token. The tokenization is the most expensive operation within the parsing process and
takes about 85% of the total CPU time, measured with the HDFS dataset. The token

61

4 Implementation

Figure 4.3: UML activity diagram of the parsing process

62

4.3 Variable Template Extraction Parser

Algorithm 1 VTEP Parser Algorithm
Input logF ile, config
Output templateExtractionF ile, templateIdentificationF ile
Procedure Parse

1: fileformat← createRegex(config)
2: for each line in file do
3: logRecords← parseLine(logRecord)
4: end for
5: logGroups← extractTemplates(logRecords, threshold)
6: exportLogTemplateExtraction(logGroups)
7: exportLogTemplateIdentification(logGroups)

types are defined in Table 4.1, where ¬ is used for formatting and not considered part
of the expression.

Token Type Heuristic Rule
IPAddress \b(?:\d{1,3}.){3}\d{1,3}\b

URL \b(?:[\w-]+.)+\w+\b
Bool \b(?i)(true|false)\b
Float \b-?\d+.\d+\b
Path ^/(?:[^/\s]+/)[^/\s\W.][^/\s]\b

Quote ^"([^"]*)"
UUID \b[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4} ¬

-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}\b
Date Identified by the dateparse package [81],

combinined with additional heuristic rules to detect false positives
Separator (\s|[%s]), where %s is a exhaustive

list of predefined and commonly occurring separators
Dynamic Identified by a heuristic rule that considers the preceding token.

Static Everything not matching

Table 4.1: Regular expressions and heuristic rules to identify token types

Specification (3): Include grouping of similar log events in the algorithm

The idea of clustering records into groups originates from the approach proposed by
Sedki et al. [22], which is paraphrased as follows:

The function that measures the similarity of two log records considers
both the number of tokens they contain and the tokens that are most likely
static tokens. Tokens are most likely static if they do not contain digits
and/or special characters. Each processed log record is split by a space
character into tokens. Only tokens that contain alphabetical letters are
used to construct the log record template string. The other tokens, i.e.,
containing digits and non–alphabetical characters, are most likely variables.

63

4 Implementation

The resulting tokens and the total number of tokens, represented as a string,
are concatenated. Log records with matching templates are classified as part
of the same LogGroup.

This approach effectively and efficiently serves as the initial clustering operation and
is very cheap considering the preprocessing and identified tokens. The template is
constructed by concatenating all static tokens of each LogRecord. In addition to the
original design, instead of comparing the string representations of each LogGroup, a
hash has been introduced that identifies the LogGroup by hashing the template of the
representative. The hash is created on LogGroup instantiation. The Algorithm 2 on
page 66 depicts the log extraction algorithm. The clustering compares the template
by hash comparison and additionally the count of total tokens between the current log
record and the LogGroup representative.

Specification (4): Perform group–based frequency analysis within the algorithm to identify
dynamic tokens

The subsequent step involves analyzing the grouped log records. The goal is to identify
static and dynamic tokens within the group of logs. Sedki et al. suggest employing
local frequency analysis for this purpose [22]. A frequency analysis involves counting
occurrences. In this context, frequency analysis refers to counting static tokens across all
log records within a LogGroup. The frequency analysis is deemed local, as the counting
occurs within a group of tokens already sharing template–based similarity.

The local frequency table is then used to transform each static token that does not meet
the upper–bound condition. The upper–bound condition is the maximum of distinct
token occurrence. As self–explanatory example, consider the following scenario:

Input: [Goku is 120cm tall]

Input: [Garados is 300cm tall]

Token sequence: [static static dynamic static]

Goku: 1

Garados: 1

is: 2

tall: 2

upper-bound: 2

transformation of sequence position 0 to dynamic

resulting token sequence: [dynamic static dynamic static]

64

4.3 Variable Template Extraction Parser

In this approach, a merging strategy is incorporated after the initial identification of log
groups. Algorithm 3 on page 67 outlines this process. The algorithm iterates through
each LogGroup, assessing its similarity to other log groups and identifying the most
similar LogGroup. If no LogGroup surpasses the threshold, the function proceeds to the
next LogGroup. Otherwise, the representatives of each LogGroup, which are the first
LogRecord in each group, are compared. This secondary comparison involves assessing
the sequence of token types. For instance, in the example above, both inputs have a
sequence of [dynamic static dynamic static] and are deemed mergeable. A merge
combines log records into a single group, after which one of the LogGroups is removed.
As the algorithm operates in place, the shifting indices are tracked accordingly.

This approach fulfills specification (4).

Specification (5): Develop the system as a standalone application that can operate
independently of log compressors and provide data analysis based on extracted templates
and variables

The application has been developed to operate independently of log compressors and
provide data analysis based on extracted templates and variables. To achieve this, the
software has been designed as a Command Line Interface (CLI) application in Go, which
bundles the main functionalities:

1. benchmark

2. parse

3. regex

However, for this specification, the parsing functionality is the most relevant. Users
must provide input and config flags when invoking the ’parse’ CLI command. The
input flag specifies the file to be parsed, while the config flag describes the path to the
configuration file. The configuration file contains essential details such as the log format,
e.g., for Apache:

1 \[<Time>\] \[<Level>\] <Content>)

Listing 4.1: Apache log format

Moreover, further details, such as output directory, cosine similarity threshold, and
whether the process should run concurrently using the parallelize flag.

65

4 Implementation

Once the parsing process is invoked, the output files are written to disk, which include
the file with the log templates, the file identifying each log line with the template, and
a JSON file that contains dynamic tokens corresponding to their position.

Additionally, performance metrics such as total processing time are displayed on STDOUT.

These output files can be used as input for other commands, such as regex, which
generates regular expressions representing alphabetical dynamic tokens that are difficult
for CLP to detect. The application is compiled into a single small binary of about
12 MB in size. By providing a straightforward interface between different domains
through output files, the software achieves independence and adheres to specification
(5). Defining and describing the configuration also adheres to specification (6).

Algorithm 2 VTEP Template Extraction Algorithm
Input logRecords, threshold
Output logGroups
Procedure extractTemplates

1: for each logRecord in logRecords do
2: for each logGroup in logGroups do
3: if logGroup[0].TemplateHash = logRecord.T emplateHash then
4: logGroup← logRecord
5: break
6: end if
7: end for
8: end for
9: identifyDynamicTokens(logGroups)

10: mergeSimiliarGroups(logGroups)
11: identifyDynamicTokens(logGroups)

66

4.4 VTEP to VTE JSON Interface

Algorithm 3 VTE Merge Algorithm
Input logRecords, threshold
Output logGroups
Procedure extractTemplates

1: if threshold ≥ 1.0 then
2: return
3: end if
4: for i← 0 ; i < length(logGroups) do
5: max← 0.0
6: k ← -1
7: vectorI← staticTokens(logRecord[i])
8: for j← i + 1; j < length(logGroups); j← j + 1 do
9: vectorJ← staticTokens(logRecord[j])

10: if wordCount(logGroup[i]) ̸= wordCount(logGroup[j]) then
11: continue
12: end if
13: similarity← cosineSimilarity(vectorI, vectorJ)
14: if similarity > threshold ∧ similarity > max then
15: max← similarity
16: k← j
17: end if
18: end for
19: if k ̸= −1 then
20: representative1← logGroup[i].LogRecords[0].tokens)
21: representative2← logGroup[j].LogRecords[0].tokens)
22: if isEqualTypeSequence(representative1, representative2) then
23: logGroup[i].LogRecords += logGroup[k].LogRecords)
24: remove(logGroup[k])
25: else
26: i← i + 1
27: end if
28: else
29: i← i + 1
30: end if
31: end for

4.4 VTEP to VTE JSON Interface

A JSON format containing the relevant results of VTEP for VTE, has been defined.
The dynamic tokens file is designed to be the only connection point between the parser
and regex package, effectively defining their interface.

This file represents dynamic tokens corresponding to specific log templates reflected
in the file structure. The JSON file contains a list of objects representing LogGroups.
Each LogGroup includes its template as a value for identification purposes and is
identified by its EventID. Moreover, each LogGroup object contains a list of lists of

67

4 Implementation

strings representing the position of a dynamic token. The outer lists index reflects the
position of the dynamic token in the template. The inner list contains the dynamic
tokens at the given position of all log records in the LogGroup.

The dynamic tokens are further reduced in scope only to contain dynamic tokens
considered hard to detect for CLP. These types of tokens do not contain digit characters
at all. Therefore strings primarily consist of alphabetical and special characters. Not
necessarily all wildcards are present for each template, because the merging algorithm
considers variable length log sequences. The following shows an example of the described
format, which is extracted from the Hadoop dataset parser results:

1 [

2 {

3 "event_id": 1,

4 "template": "OutputCommitter set in config null",

5 "variables": []

6 },

7 [...]

8 {

9 "event_id": 3,

10 "template": "Registering class <*><*> for class <*><*>",

11 "variables": [

12 [

13 "$EventType",

14 "$EventType",

15 "$EventType",

16 "$JobEventDispatcher",

17 "$TaskEventDispatcher",

18 "$TaskAttemptEventDispatcher"

19],

20 [

21 "$ContainerAllocatorRouter",

22 "$SpeculatorEventDispatcher",

23 "$ContainerLauncherRouter"

24]

25]

26 },

27 [...]

28]

Listing 4.2: Snippet of the VTE input file in JSON format

4.5 Variable Template Extractor

In this section, the implementation of VTE is described. The functionality is found in
the regex package. The implementation details are oriented towards the specification

68

4.5 Variable Template Extractor

defined in 3.4 on page 43 and how the implementation fulfills them.

This section also summarizes the iterative knowledge gains and design adaptions as
intended by the design science methodology described in Section 3.2 on page 35. The
class diagram illustrated in Figure 4.7 on page 76 shows each component’s corresponding
fields and relevant functions. Figure 4.4 describe and illustrate the overall process of
generating a regular expression based on the dynamic tokens.

The parse function initiates the process by tokenizing each input word and uses the
tokens to construct the PrefixTree as described in Section 2.1 on page 11. The
PrefixTree can be interpreted as a Deterministic Finite Automaton (DFA). Assuming
that a PrefixTree consists of a root node, intermediate nodes and leaf nodes, then the
root node is the initial state of the DFA, each intermediate node’s value, e.g. a string,
is a transition symbol connecting two states and the leaf nodes are accepting states.
The DFA is minimized with the Hopcroft algorithm [78]. The minimization leads to
more concise regular expressions. This is obvious, because the minimization merges
equivalent classes of states, therefore only reducing or minimizing the total amount of
states and transitions without diminishing the expressiveness of the regular language
represented through the DFA. The minimized DFA is then used to built an AST for
PERL–compatible regular expression [82]. Finally the string representation of the AST
is returned as result.

Figure 4.4: UML activity diagram of the regex parse process

69

4 Implementation

Specification (1): Design an algorithm that constructs regular expressions based on input
sets of dynamic tokens extracted by the log template extraction algorithm using the
following methods

(a) Represent tokens using a graph data structure. The prefix tree efficiently deduplicates
common prefixes, reducing the processing time for the subsequent DFA construction,
minimization, and regex generation steps. Figure (a) 4.5 on page 75 presents the
extracted dynamic tokens from a real-world production log file from the Hadoop dataset.
These dynamic tokens, found at specific positions in a log file template, are transformed
into regular expressions and used to enhance the CLP configuration for detecting such
dynamic tokens. These tokens are derived from the following snippet of the VTE JSON
interface file, which is extracted by VTEP and provided as input to VTE:

1 {

2 "event_id": 95,

3 "template": "attempt_<*>_<*>_m_<*>_<*> TaskAttempt Transitioned from

<*> to <*>_CONTAINER_CLEANUP",

4 "variables": [

5 [...]

6 [

7 "SUCCESS",

8 "SUCCEEDED",

9 "FAIL",

10 "FAIL"

11]

12]

13 },

Listing 4.3: Snippet of extracted dynamic tokens from the Hadoop dataset

It can be observed that the common prefix SUCCE is successfully identified. Two
branches feature ambiguous suffixes, namely EDED and SS. As anticipated, the FAIL
dynamic token follows a unique path. However, it is worth noting that the input
is deduplicated, as the FAIL token appears only once in the tree, even though it
occurs twice in the input. This data structure and its application effectively meet the
specification 1.a.

(b) Minimize the graph using Hopcroft’s algorithm. Hopcroft’s minimization algorithm
is a well understood for deterministic finite automata [78]. The algorithm aims to
minimize the number of states in a DFA while maintaining its functionality, which is
beneficial for reducing the space required to store the DFA, simplifying its understand-
ing, and improving the performance of the AST construction that use it. Moreover,
minimization helps to generalize regular expressions, making them more robust and
better suited for CLP’s configuration file. There are alternatives to the prefix–tree

70

4.5 Variable Template Extractor

& Hopcroft approach, including prefix–tree combined with either Moore’s algorithm
[83], Brzozowski’s algorithm [84], or Aho-Sethi-Ullman’s algorithm [85, pp. 182–184]
and incremental minimization algorithms, such as Watson’s algorithm and its successor
Daciuk’s algorithm [86].

Daciuk’s algorithm is particularly interesting, because it does not require to construct
a prefix–tree beforehand. It constructs a minimized DFA directly. Since the design
specified to use the Hopcroft algorithm and the treatment analysis resulted in the
knowledge gained that consisted of potential for a simpler implementation and faster
execution time, the Daciuk algorithm was implemented and compared. Both algorithms
result to the same qualitative outputs. The methodology to measure the execution time
is simple. The time is measured using the go built-in time package. A start timestamp
is constructed, the function is executed and the difference between the start timestamp
and the current timestamp is used to measure the execution time. The Daciuk algorithm
reduced the code complexity and increased the performance significantly. The average
execution time of a Parse function with the Hadoop dataset over 100 runs was measured.
The prefix–tree & Hopcroft resulted to 43.39ms, while the Daciuk algorithm resulted
to 1,79ms. This is a execution time decrease of 95.87%. This experiment results are
consistent with the results and recommendations of Daciuk, which suggests that ‘Both
incremental algorithms are the fastest in practical applications’ and ‘Trie + Hopcroft
minimization is the slowest algorithm’ [87].

The Figure 4.5 on page 75 shows the resulting DFA from the prefix–tree. They do not
differ much, except the nodes are transformed to states, and the edges of the DFA hold
the tokens. Equivalent states are minimized at this point.

(c) Convert the minimized graph into an AST using Brzozowski algebraic method Two
methods for constructing regular expressions based on a list of input strings, e.g. the
purely alphabetical dynamic tokens in a log file, have been explored: the Brzozowski
Algebraic Method and the State Elimination Method [79, 88].

The Brzozowski Algebraic Method relies the substitution method for solving systems
of equations. The method iteratively computes and substitutes regular expressions to
derive a final expression composed of all subexpressions. Alternative but methodically
similar algorithms are presented by McNaughton & Yamada, and Kleen [89, 90].

Brzozowski’s method is based on Arden’s theorem, which is a language equation of
the form X = AX ∪B, where X, A, and B represent languages [88]. In this context,
language equations resemble numerical equations, but their variables assume values of
formal languages instead of numbers. The key operations involved are concatenation (·),

71

4 Implementation

union (∪), and Kleene star (∗). These mathematical notations forming the foundation
of the algorithm.

The algorithm constructs an equation for each state, using the transitions that represent
subsets of the language to populate the equation. It then solves the system of equations
by successively substituting terms from preceding equation into the current equation.
This process is repeated until only one solvable equation remains, yielding the desired
regular expression.

Consider the following example with the given DFA in Figure 4.6 on page 76, with the
input strings abc and azc, given ε is the terminating symbol:

Q0 = aQ1

Q1 = bQ2 ∪ zQ2

Q2 = cQ3

Q3 = ε

Q0 = aQ1

Q1 = bQ2 ∪ zQ2

Q2 = c(ε)
Q0 = aQ1

Q1 = b(c(ε)) ∪ z(c(ε))
Q0 = a(b(c(ε)) ∪ z(c(ε)))

Assuming every transition symbol to be a literal expression, the concatenation and
union operations results to:

Literal(a) · (Alternation(b|z) · Literal(c))

Finally stringifying the expression to a(b|z)c or a[bz]c, in case of the possibility to
identify a CharClass. This further shows that a given DFA, and therefore language, can
be expressed by different resulting regular expressions.

On the other hand, the State Elimination Method, while still based on Arden’s theorem,
works by iteratively removing states from the graph, while updating the remaining
transitions to maintain the functionality of the original automaton [88]. This method
systematically eliminates states until only the start and final states remain, yielding a
regular expression that represents the accepted language as shown in Algorithm 4 on
the next page.

To compare the performance of these two methods, their execution times were measured
when constructing regular expressions for a given set of dynamic tokens. The same
methodology as in specification 1.b applies. The results are as follows:

• State Elimination Method: 1.79 ms

72

4.5 Variable Template Extractor

Algorithm 4 VTE Regular Expression from DFA algorithm
Input DFA
Output string representation of regular expression
Procedure GenerateRegex

1: for each transition in dfa.transitions do
2: initialize literal for symbol in transition
3: end for
4: add a new epsilon initial state
5: for each acceptedState in dfa.acceptedStates do
6: add a new epsilon accepted state
7: end for
8: for each state in dfa.states do
9: incoming, outgoing, remaining ← transitions(state)

10: for each inc in incoming do
11: for each out in outgoing do
12: concat← concatinate(inc.Expr, out.Expr)
13: transitionStateMap← concat
14: end for
15: end for
16: for each from, toMap in transitionStateMap do
17: for each to, expressions in toMap do
18: remaining ← Union(expressions)
19: delete(state)
20: end for
21: end for
22: end for
23: collect remaining transitions and build union
24: return string representation of union

• Brzozowski Algebraic Method: 2.415 ms

The State Elimination Method demonstrates a 35% decrease in execution time compared
to the Brzozowski Algebraic Method. Based on these results, and considering the
importance of efficient processing and analysis of log files, the State Elimination Method
has been chosen as the primary method for constructing regular expressions in the VTE
system. This treatment evaluation and reiteration on the treatment design ensures
that the generated regular expressions are both accurate and produced with optimal
performance.

(d) Translate the AST into regular expressions. The translation of the AST to a string
representing the regular expression retrieves the last remaining expression. For example,
in the case of the Brzozowski Algebraic Method, this is the equation at index zero
or the aggregation of all remaining transitions between two remaining states in the
State Elimination Method. Finally, the String function is called on the struct that
implements the Expression interface, returning the regular expression as a string.

73

4 Implementation

Specification (2): Implement a configuration mechanic that allows users to

(a) Control whether to generalize digits to a character class. The configuration mechanic,
as described in Section 4.2 on page 58 is similarly passed to VTE. A configuration
flag digitsToCharClass has been implemented. This flag causes VTE to replace each
numerical character with \d. \d is the charclass that conforms to ‘a decimal digit
character’ [91].

(b) Control whether to generalize characters to a word class. A configuration flag
digitsToCharClass has been implemented. This flag causes VTE to replace each
alphanumerical character with \w. \w is the charclass that conforms to ‘a single
alphanumeric character’ [91]. The implementation checks this after (a), so an over
generalization is avoided.

(c) Specify whether the regular expression generation algorithms should be parallelized. No
parallelization opportunity has been discovered given the time–constraint of the thesis.
Since this is a non–functional requirement, the design is still valid.

74

4.5 Variable Template Extractor

U1

C2

C3

E4

S5 E5

S6 D6

E7

D8

F0

A1

I2

L3

root-1

S0

(a) Prefix–tree

8

9

D

10

E

11

D

4

5

E

E

6

S

7

S

1

2

U

3

C

C

12

13

A

14

I

15

L

0

S F

(b) DFA

Figure 4.5: Real–world dynamic tokens from the Hadoop datasets are transformed to
regular expressions using a prefix–tree and DFA minimization

75

4 Implementation

Figure 4.6: An exemplary DFA to demonstrate Brzozowski Algebraic Method

Figure 4.7: UML class–like diagram of the regex package with PrefixTree and Hopcroft
minimization

76

4.6 Parser Benchmark

4.6 Parser Benchmark

The benchmark for log parsers in this study is modeled after the work of Zhu et al., which
was implemented in Python, and is ported to go to evaluate log parsers implemented in
go [10]. The parsing accuracy is evaluated based on four key metrics: precision, recall,
F-measure, and accuracy, which are computed for the parsed log events and compared
with the ground truth events. The benchmark is a Design Science environment, which
is used to evaluate the results of VTEP.

Precision measures the proportion of correctly identified positive instances out of all
instances that were identified as positive. It is calculated as T P

(T P +F P) , where TP

is the number of true positives (correctly identified positive instances), and FP is
the number of false positives (instances that were identified as positive but are
actually negative).

Recall measures the proportion of correctly identified positive instances out of all
positive instances in the ground truth. It is calculated as T P

(T P +F N) , where FN is
the number of false negatives (instances that are positive in the ground truth but
were not identified as positive).

F-measure is the harmonic mean of precision and recall and provides a balanced view
of the model performance. It is calculated as 2∗precision∗recall

(precision+recall) .

Accuracy measures the overall proportion of correctly classified instances. It is calculated
as (T P +T N)

(T P +T N+F P +F N) , where TN is the number of true negatives (correctly identified
negative instances) and TP, FP, FN are as defined above.

A CLI command benchmark was implemented to run the benchmark process. When
invoked, this command runs the benchmark using 16 datasets, all of which were collected
and made publicly accessible for research purposes by Zhu et al. [10]

Each of the 16 datasets is accompanied by a log format and threshold. The benchmarking
process yields outputs for each dataset, including the four metrics mentioned above and
the execution time. Additionally, statistical analyses are conducted across all datasets,
providing the median, mean, and standard deviation values.

To calculate the metrics, the evaluation function first counts the occurrences of each
event in the ground truth and parsed log sequences. It then calculates the total number
of possible event pairs for each sequence. For instance, if there are n occurrences of a
given event in the ground truth, then the total number of possible pairs for that event
is the binomial coefficient n choose 2, which is equivalent to n(n−1)

2 . The function then
identifies the number of accurate event pairs by comparing the parsed log and ground

77

4 Implementation

truth events. If the parsed log contains two or more events with the same ID, and all
those events match a ground truth event ID associated with the same line number, then
those events are considered accurate.

The combination formula determines the number of ways to choose r items from a set of
n items. For example, 2 choose 2 means choosing 2 items from a set of 2 items, which
results in 1 possible combination. Similarly, 3 choose 2 means choosing 2 items from a
set of 3 items, which results in 3 possible combinations: 1,2, 1,3, and 2,3.

In the log parsing benchmark, the combination formula calculates the total number of
possible pairs of events that can occur in the log files. This is important for calculating
the accuracy of the parsing algorithm since it provides a baseline for comparison.
Suppose the parsing algorithm identifies pairs of events that occur in the log files more
or less frequently than would be expected based on the total number of possible pairs.
In that case, this can indicate that the algorithm is either over or under-parsing certain
events.

The benchmark uses the number of pairs to calculate the precision, recall, F-measure,
and accuracy metrics. Precision is the fraction of accurate event pairs in the parsed log
sequence out of the total number of possible pairs. Recall is the fraction of accurate
event pairs in the parsed log sequence out of the total number of possible pairs in the
ground truth sequence. The F-measure is the harmonic mean of precision and recall
and measures the balance between the two metrics. Accuracy is the fraction of events
in the parsed log sequence that are correctly parsed out of the total number of events
in the ground truth sequence.

Consider the following example sequences:

groundtruth := []string{

"E1", "E2", "E3", "E4",

"E4", "E4", "E3", "E5", "E6"

}

parsedlog := []string{

"E1", "E2", "E3", "E4",

"E5", "E5", "E3", "E6", "E7"

}

First, the number of occurrences of each event in both sequences is determined. The
ground truth sequence is processed in the following manner:

[E1]: 1

78

4.6 Parser Benchmark

[E2]: 1

[E3]: 2

[E4]: 3

[E5]: 1

[E6]: 1

In order to enumerate pairs of events, it becomes necessary to compute the number of
pairs that can be established for each event with multiple occurrences. This computation
is performed using the combinatorial formula n choose 2, where n denotes the frequency
of the event. Thus, it is found that:

[E3]: 2 choose 2 = 1

[E4]: 3 choose 2 = 3

These calculated values are then aggregated to derive the total pairs count in the ground
truth sequence, giving a sum of 1 + 3 = 4.

The same methodology is subsequently applied to the parsed log sequence, leading to
the following:

[E1]: 1

[E2]: 1

[E3]: 2

[E4]: 1

[E5]: 2

[E6]: 1

[E7]: 1

And finally, for the pairs:

[E3]: 2 choose 2 = 1

[E5]: 2 choose 2 = 1

The number of pairs in the parsed log sequence amounts to 1 + 1 = 2.

A mapping is subsequently constructed between the ground truth event IDs and the
parsed log event IDs. The process begins with an iteration over all parsed events, starting
with E1. The log line numbers corresponding to E1are acquired; in this instance, there
is only one E1, the first element of the parsed log sequence. This log line number is then

79

4 Implementation

utilized to identify the corresponding event in the ground truth sequence, specifically,
groundtruth[0]: E1. A counter for E1 is incremented, indicating that it occurred once
in the parsed log sequence. This procedure is replicated for every parsed event.

The corresponding go code:
1 precision = float64(accuratePairs) / float64(parsedPairs)

2 recall = float64(accuratePairs) / float64(realPairs)

3 f_measure = 2 * precision * recall / (precision + recall)

4 accuracy = float64(accurateEvents) / float64(len(groundtruth))

This information gained from the mapping determines the accuracy of a pairing. If only
one counter was created for a parsed event ID and the number of log lines in the parsed
log sequence is the same as the number of log lines in the ground truth sequence for the
corresponding ground truth event ID, then the pairing is considered accurate.

80

5 Evaluation

Section 5.1 on the next page presents the benchmark results for VTEP. Based on these
results, the VTEP design effectiveness is reported. Section 5.2 on page 85 describes
the method for collecting the compression measurables that resulted from using CLP
with different log files and by providing a custom configuration including the regular
expressions generated by VTE. Based on these results, the VTE design is discussed.
Section 5.3 on page 88 shows the effects of parsing and compression on the succeeding
steps, answering R2.

All the experiments were conducted on a machine with 6-core AMD Ryzen 5 1600X 3.6
GHz, 32GB RAM, and an arch–based operating system.

Dataset LogSig SLCT LFA LogCluster SHISHO MoLFI LKE LogMine Spell AEL Lenma Drain VTE VTE+ Best
Android 0.548 0.882 0.616 0.798 0.585 0.702 0.911 0.504 0.919 0.682 0.88 0.911 0.971 0.971* 0.971
Apache 0.582 0.731 1.0* 0.709 1.0* 1.0* 1.0* 1.0* 1.0* 1.0* 1.0* 1.0* 1.0* 1.0* 1.0
BGL 0.227 0.573 0.854 0.835 0.711 0.947 0.128 0.723 0.787 0.957 0.69 0.963 0.952 0.974* 0.974

Hadoop 0.633 0.423 0.9 0.563 0.867 0.946 0.67 0.87 0.778 0.869 0.885 0.948 0.962* 0.962* 0.962
HDFS 0.85 0.545 0.885 0.546 0.998 0.998 1.0* 0.851 1.0* 0.998 0.998 0.998 0.998 0.998 1.0

HealthApp 0.235 0.331 0.549 0.531 0.397 0.442 0.179 0.684 0.639 0.568 0.174 0.78 1.0* 1.0* 1.0
HPC 0.354 0.839 0.817 0.788 0.325 0.872 0.846 0.784 0.654 0.903 0.83 0.887 0.921 0.951* 0.951
Linux 0.169 0.297 0.279 0.629 0.672 0.284 0.502 0.612 0.605 0.673 0.701* 0.69 0.363 0.418 0.701
Mac 0.478 0.558 0.599 0.604 0.595 0.675 0.369 0.872 0.757 0.764 0.698 0.787 0.814 0.917* 0.917

OpenSSH 0.373 0.521 0.501 0.426 0.619 0.54 0.426 0.431 0.554 0.538 0.925* 0.788 0.626 0.925* 0.925
OpenStack 0.866 0.867 0.2 0.696 0.722 0.213 0.79 0.743 0.764 0.758 0.732 0.733 1.0* 1.0* 1.0
Proxifier 0.494 0.518 0.026 0.478 0.517 0.013 0.495 0.517 0.527 0.495 0.517 0.527 0.851 0.856* 0.856

Spark 0.544 0.685 0.994 0.799 0.906 0.418 0.634 0.576 0.905 0.905 0.884 0.92* 0.91 0.91 0.926
Thunderbird 0.694 0.882 0.649 0.599 0.576 0.647 0.813 0.919 0.844 0.941 0.943 0.955 0.668 0.96* 0.96

Windows 0.689 0.697 0.588 0.713 0.701 0.711 0.99 0.993 0.989 0.69 0.566 0.997* 0.412 0.997* 0.997
Zookeeper 0.738 0.726 0.839 0.732 0.66 0.839 0.855 0.688 0.964 0.921 0.841 0.967 0.995* 0.995* 0.995
Average 0.53 0.63 0.644 0.653 0.678 0.64 0.663 0.735 0.793 0.791 0.767 0.866 0.843 0.927* N.A.

Table 5.1: Accuracy of log parsers measured with 16 datasets and 14 parsers

81

5 Evaluation

5.1 Analyzing Parsing and Performance of VTEP: Evaluating Accuracy,
Efficiency, and Robustness

In order to evaluate the prototype, a real-world setting is emulated using the benchmark.
In conjunction with the artifact, this environment is structured into an architecture. As
displayed in Figure 5.1, this architecture facilitates observable system behavior. It is
composed of components that interact with each other.

System stimulation, for instance, providing log files to VTEP, and processing them
using the benchmark command, yields a system response, such as the benchmark results.
In the following VTE and VTE+ are the names used for the implementations of VTEP.
The underlying mechanism is based on the log template extraction framework portrayed
in Figure 3.6 on page 49. It includes the steps of preprocessing, identifying, extracting,
and postprocessing.

The process always involves a set of log records, the Log, either as a log file or a stream
of log records. The parser component consists of two sub–components, which apply
generally as part of a log template extraction parser. This is because each log record
must be classified into a cluster or grouping, resulting in a template encompassing a
subset of all known log records.

The benchmark yields measurables as outlined in Section 4.6 on page 77, which serve to
facilitate further inference.

Table 5.1 presents the accuracy for each dataset. VTE+ incorporates the merging
algorithm, distinguishing it from VTE. The values are rounded to three decimal places
during data preparation. Due to excessive processing time, the IPLoM parser was
unable to complete the android and mac datasets. Although these incomplete data
points caused IPLoM to be removed, the dataset’s integrity remains intact, especially
when comparing VTE with 12 other parsers.

Figure 5.3 displays a boxplot that offers a comparative overview of accuracy distribution
across 16 log datasets for each log parser. Each box in the plot represents five key
statistical measures: the minimum value (bottom line), the first quartile or 25th

Figure 5.1: Architecture of VTEP evaluation

82

5.1 Analyzing Parsing and Performance of VTEP: Evaluating Accuracy, Efficiency, and Robustness

(a) HDFS

(b) BGL (c) Android

Figure 5.2: Effectivness of log parsers based on execution time of the parsing process
with increasing log volumne

percentile (lower edge of the box), the median (line inside the box), the third quartile
or 75th percentile (upper edge of the box), and the maximum value (top line). Circles
denote outliers. The results shown in Figure 5.3 are sorted by mean, providing insights
into the design’s accuracy and robustness. Figure 5.2 compares the effectiveness of the
parsing process by examining the execution time.

High accuracy VTE+ achieves the highest accuracy of all evaluated parsers. With a
mean of 92.7% accurately parsed log lines, VTE+ achieves 6.8% higher accuracy
on average than Drain, considered one of the most accurate and efficient parsers
[10]. VTE+ has a single outlier. The Linux dataset contains a large number of
templates. Specifically, the dataset contains dates and usernames in the log body.
The dates contain purely alphabetical month and day strings, such as Jan, Jul and
Mon, Thu. The usernames are alphabetical as well. This causes template explosion.
The merge algorithm can detect those cases with a high enough threshold defined
but over–generalizes other templates in return, reducing the accuracy. Parsing
and accurately detecting alphabetical dynamic tokens remains a challenging task.

Low variance of accuracy VTE+ achieves the smallest Interquartile Range (IQR) of
all evaluated parsers. The IQR describes the spread of data. A minor variance

83

5 Evaluation

across different datasets indicates a robust design. Therefore the design is broadly
applicable and can process a wide range of log data.

Effective and scalable VTE+ shows similar behavior to Drain regarding parsing time.
VTE+ has slightly higher parsing times on small data sizes (<1MB) but scales
well on bigger data sizes, achieving the fastest parsing on the biggest evaluated
datasets HDFS 1GB, BGL 500MB, and Android 100MB. Effectively parsing about
7 million log lines in 8:30 minutes in the HDFS dataset, compared to Drain with
slightly below 10 minutes, Spell with about 11:20 minutes, and AEL with 18:15
minutes. It has to be noted, that the current implementation is Random Access
Memory (RAM) limited.

Figure 5.3: Among 12 other parsers, VTE has a competitive mean. VTE+ achieving
the highest mean. Sorted by mean.

84

5.2 Analyzing the Impact of Parsing and Custom Regular Expressions on Log Compression

5.2 Analyzing the Impact of Parsing and Custom Regular Expressions
on Log Compression

An evaluation architecture is presented, as shown in Figure 5.4, to evaluate the VTE
design and its contribution to helping CLP operators to define regular expressions for
the compression process. The system–prototype combines all presented artifacts to
evaluate the environment, e.g., CLP.

The experiment consists of two parts. The first part uses CLP’s default mode. The
default mode compresses the target log file without providing a configuration file.
The second part uses CLP’s configuration interface. CLP takes a configuration file,
which enables the CLP operator to define delimiters, timestamps, and custom regular
expressions. The configuration file is adapted for each log file. VTE provides custom
regular expressions based on the parsing results. These custom regular expressions
represent dynamic tokens, which are hard to detect for parsers, such as dynamic tokens
that consist solely of alphabetical characters. The sizes of the resulting archives are
measured. Because CLP only supports a non—standard subset of regular expressions,
the expressions resulting from VTE are modified to conform to the interface without
changing the expressed language.

For example, the following example shows the modifications. CLP cannot process
non-capture capture groups, and the | operations need the left and right expression to
be encapsulated by a capture group.

1 Dynamic2:get(?:RunningAppProcesse|Task)s

2 Dynamic2:(getRunningAppProcesses)|(getTasks)

Listing 5.1: Data preparation for CLP configuration

If VTE could not identify any dynamic tokens conforming to (1) at least five occurrences
across log records and (2) more than one character in the dynamic token, then the
dataset result is described with N.A.. This requirements aim to catch the most occurring
alphabetical dynamic tokens assumed to have the most impact on log compression. The
results for each dataset are shown in 5.2 on page 87. The key observations are as follows:

Figure 5.4: Architecture of VTE evaluation

85

5 Evaluation

Timestamps Accurately detecting the timestamp format is of great importance in the
resulting compression ratio. CLP is able to handle the most common and simple
to parse timestamp formats, such as 3/31/2014 or 2013-04-01 22:43:22. Parsing
timestamps where the format cannot be consistently detected, such as Jul 1

09:00:55 found in the Mac dataset or Jun 25 19:25:31 and Jun 25 19:25:31

Jul 1 00:21:28 in the Linux dataset leads to unexpected behavior. This behavior
is manifested by identifying multiple log lines as a single one, which reduces
compression ratio, such as 9% less compression ratio in the Linux data set.

Alphabetical Dynamic Tokens Identifying the tokens that cause template explosion is
a main concern for optimal compression. CLP is good at detecting dynamic
tokens containing numbers, but has a hard time identifying alphabetical dynamic
tokens. An example is the Thunderbird dataset, where log records containing
alphabetical dynamic tokens is shown in Listing 5.2. For each log record with
the LNKX where X is any uppercase letter, a separate template is created. By
correctly identifying these occurrences, the compression can be improved. VTE is
able to detect them partially. In particular the occurrences in line 4-8. Resulting
to the regular expression LNK(?:([DF])|[EG-H]). Partially because LNKA, LNKB,
LNKC being part of another template, not including the suffix ", disabled" and
therefore not conforming to the dynamic tokens inclusion requirement (1) having
more than five occurrences in all log records.

1 [...] ACPI: PCI Interrupt Link [LNKA] [...]

2 [...] ACPI: PCI Interrupt Link [LNKB] [...]

3 [...] ACPI: PCI Interrupt Link [LNKC] [...]

4 [...] ACPI: PCI Interrupt Link [LNKD] [...], disabled

5 [...] ACPI: PCI Interrupt Link [LNKE] [...], disabled

6 [...] ACPI: PCI Interrupt Link [LNKF] [...], disabled

7 [...] ACPI: PCI Interrupt Link [LNKG] [...], disabled

8 [...] ACPI: PCI Interrupt Link [LNKH] [...], disabled

Listing 5.2: Truncated snippet of the Thunderbird dataset showing alphabetical
dynamic tokens

While the default mode of CLP results in excellent compression ratio in general with good
usability, the usability of the configuration interface of CLP is improvable, especially by
letting CLP handle the timestamps detection similar to the default mode and improving
the expressiveness of custom regular expressions.

These observations and their corresponding problems for log compressors are independent
of CLP. While VTE can detect some of these alphabetical dynamic tokens and support
log compression tool operators by providing a custom regular expression generated by
VTE, accurately identifying all these tokens remains challenging. The defined regular
expression needs to lead to a template merge, which causes only the variable to be saved

86

5.2 Analyzing the Impact of Parsing and Custom Regular Expressions on Log Compression

in the variable dictionary without creating a log template for each variable, therefore
preventing template explosion. While CLP can prevent such template explosions, e.g.,
file system paths, preventing template explosions for tokens representing usernames or
states with high occurrence counts is unsolved.

As shown in Table 5.2 VTE can help operators to fine–tune their configuration for log
compression tools, which is dependent on the underlying data. Custom and VTE share
the same configuration, except the additional custom regular expressions provided by
VTE.

Dataset Original Default Custom VTE % Custom to VTE % Default to VTE
Android 277077 20610 11319 11305 0.12 45.14798
Apache 169240 8662 9343 N.A. N.A. N.A.
BGL 315151 75511 75486 N.A. N.A. N.A.
Hadoop 382949 6217 7286 7105 2.484 -14.28
HDFS 285848 72613 71465 N.A. N.A. N.A.
HealthApp 185457 14611 28076 N.A. N.A. N.A.
HPC 149178 4389 5338 5290 0.899 -20.52
Linux 214486 6474 15301 15312 0.0718 -136.515
Mac 317415 55371 54374 52954 2.611 4.365
OpenSSH 223217 3278 3270 3237 1.009 1.250
OpenStack 593120 43348 66322 66416 -0.1417 -53.215
Proxifier 236962 26825 31719 26589 16.173 0.879
Spark 194268 3327 9265 N.A. N.A. N.A.
Thunderbird 323193 43956 43783 43838 0.1256 0.26845
Windows 283434 10703 10848 10799 0.45169 -0.8969
Zookeeper 277892 4458 8434 4391 47.9369 1.5029

Table 5.2: Compression of 16 datasets with CLP. The columns Original, Default, Cus-
tom, and VTE show compressed file sizes in bytes. Custom to VTE and Default to VTE
show the percentage difference, where positive values indicate a compression improve-
ment and negative values a decrease.

87

5 Evaluation

5.3 Investigating the Impact of Parsing and Compression on Log
Data’s Processability

To research how applying parsing and compression techniques on log data affect its
further processability, I analyze the subdomains this questions frames. The first domain
is the results of the parsing process, which gets passed to compression process. The
parsing quality measured by the accuracy metric does impact the compression ratio.

The second domain is the resulting archive of the compression process. These archive
do have some characteristics, i.e., compression size, decompression speed, partial decom-
pression. Both investigations lead to concluding answer R2

To evaluate the impact of parsing and compression techniques on log data’s processability,
an analysis is conducted on the relevant subdomains. The first domain concerns to the
outcomes of the parsing process, which are subsequently passed into the compression
process. The influence of the accuracy of parsing on the compression ratio is shown.

The second domain concerns the resulting archives produced by the compression process.
These archives show various characteristics, such as compression size and the ability for
partial decompression. Both lines of investigation contribute to providing a conclusive
answer to the question posed by R2.

Dataset
Revised VTE+ Drain

Size L2 Size L3 Match Size L2 Size L3 Match Size L2 Size L3 Match
Android 27146 32221 100.0% 28254 33738 99.9% 28325 33527 96.7%
Apache 6665 10182 100.0% 6670 10182 100.0% 6231 9677 100.0%
BGL 48214 58416 100.0% 48747 58951 99.7% 45041 54673 100.0%

Hadoop 24796 31460 100.0% 25245 31002 100.0% 20527 23734 83.2%
HDFS 47202 62946 100.0% 50898 66025 94.7% 47056 63057 100.0%

HealthApp 14854 20750 87.6% 15253 21223 87.6% 15048 19069 87.6%
HPC 23995 26494 100.0% 23975 26274 99.5% 24000 26232 99.5%
Linux 19172 22311 100.0% 20116 23456 100.0% 20108 23451 100.0%
Mac 65594 78128 96.7% 71317 83771 96.9% 55243 66622 90.0%

OpenSSH 11315 15547 100.0% 16825 21628 100.0% 11264 14916 100.0%
OpenStack 54835 68385 100.0% 52974 61190 49.1% 56593 64252 49.1%
Proxifier 21572 26850 84.9% 18921 20874 57.8% 20841 23903 70.8%

Spark 10249 15891 100.0% 10150 15847 100.0% 10635 16312 100.0%
Windows 12245 16587 99.9% 13084 17128 99.4% 11888 16023 100.0%
Zookeeper 23189 28498 100.0% 23086 28398 100.0% 22607 28016 100.0%

Table 5.3: Compression of 15 datasets with Logzip [17]. Three log parser results are
passed to Logzip. The revised template files are found in the LogParser project [10]. L2
and L3 are Logzip compression modes, where L2 uses a template extraction file to match
log records. L3 additionally creates a dynamic token encoding. The size is in bytes. The
match column shows the percentage of log records that matched a log template.

88

5.3 Investigating the Impact of Parsing and Compression on Log Data’s Processability

5.3.1 Parsing

Logzip is operated with three sets of log template files, and the compression results are
displayed in their respective column in Table 5.3 on the preceding page. The Revised set
serves as the ground truth, which the templates can be found in the logparser project
[10]. The VTE+ set represents the template files generated by the parser introduced in
this thesis, while the Drain set corresponds to the template files generated by the Drain
parser [14].

Logzip operates in three modes of which only L2 and L3 are relevant. The L2 mode
employs the templates to extract dynamic tokens from the log records, while the L3
mode goes a step further by encoding the variables with a sequential 64-base number
and storing the mapping in a file [17]. The match column indicates the percentage of
log records matched with a template.

Contrary to the initial assumption that the templates should achieve a 100% match
rate for all datasets, since they were generated based on the corresponding dataset, the
Logzip tool encountered difficulties in some instances with specific datasets. For example,
it struggled with whitespace at the beginning of a log template for the HealthApp
dataset.

Figure 5.5 on page 91 illustrates the architecture employed to generate these measure-
ments. The datasets are relatively small, approximately 300KB, which explains the
limited effectiveness of the L3 mode, as creating a parameter mapping file does not
provide significant benefits, and the mapping overhead outweighs the gain in compression
ratio.

Furthermore, datasets with generally lower matching rates, such as the OpenStack,
Proxifier, and Hadoop datasets, tend to achieve better compression than those with
higher matching rates.

Differences in compression ratios can be observed in datasets where all parser templates
achieve a 100% match rate, such as Apache, Linux, OpenSSH, Spark, and Zookeeper.
Analyzing the Apache results reveals that Drain’s templates are more specific than
the Revised and VTE+ templates. This results in additional variables being stored in
separate files with the Revised and VTE+ templates rather than directly referencing
the log record to the template, as in the case of the Drain templates. While the Revised
and VTE+ templates are more versatile in matching records and their dynamic tokens,
being more specific, i.e., not recognizing potential dynamic tokens, can lead to a better
compression ratio. As a result, fewer wildcards are present while still achieving a 100%
match rate for the log records.

89

5 Evaluation

On the contrary, when examining the Spark dataset, VTE+ contains 57 wildcards with
35 templates, whereas Drain contains 29 wildcards with 29 templates. Although Drain
achieves higher overall accuracy than VTE+ on the Spark dataset, as shown in Table
5.1 on page 81, VTE+ yields a better compression ratio.

While the accuracy metric commonly used in the literature is valuable for comparing
sequences of log events against ground truth, the data indicate that unknown factors
influence the effectiveness of templates for log compression.

Comparing the VTE+, Revised, and Drain templates shown in Listing 5.4 for the log
displayed in Listing 5.3 provides insights into the quality of a template for compression.
Logzip further splits tokens identified by a wildcard, which leads to redundant data
being stored. Although the Drain template is more accurate than the VTE+ templates,
the VTE+ templates achieve higher compression with Logzip. In the case of Revised
and Drain, the token attempt_ is redundantly saved as a dynamic token, while VTE+
includes this information in the template itself.

Therefore, balancing generalization and specialization is crucial in determining the
quality of log templates for log compression. A high–quality template is as specialized
as possible while maximizing the matching coverage. The quality of log templates
utilized by the compressor is a determining factor in the resulting compression ratio.

Specialization also encompasses the encoding of data types. For this data types would
need to be identified, which remains challanging.

For instance, a single float value can be stored more efficiently than two integers delimited
with a dot.

1 [...] attempt_201706092018_0024_m_000004_1026: Committed

2 [...] attempt_201706092018_0024_m_000002_998: Committed

3 [...] attempt_201706092018_0024_m_000003_1012: Committed

4 [...] attempt_201706092018_0024_m_000001_984: Committed

5 [...] attempt_201706092018_0024_m_000000_970: Committed

Listing 5.3: Snippet of Spark log records

1 Drain:

2 <*>: Committed

3 VTE+:

4 attempt_<*>_<*> Committed

5 attempt_<*>_<*>_m_<*>_<*>: Committed

6 Revised:

7 <*> Committed

Listing 5.4: Templates for a specific spark log record

90

5.3 Investigating the Impact of Parsing and Compression on Log Data’s Processability

Figure 5.5: Architecture of parser results evaluation using Logzip as compressor.

Figure 5.6: Logzip compression with templates from VTE+, Drain, and Revised com-
pared to the original file size. Values in bytes.

5.3.2 Compression

The following section investigates the impact of various log compression techniques on
resulting archive files. Figure 5.7 presents a comparison between CLP, Logzip with
revised templates, and zstd, a general-purpose compressor.

Among the 16 datasets evaluated, zstd achieves the lowest compression ratio on 7
datasets, while Logzip performs the worst on 6 datasets. The Thunderbird dataset did
not finish compressing, resulting in the lowest compression ratio. CLP achieves the
lowest compression ratio on 3 datasets.

Figure 5.7: Comparison of three compressors. Logzip and CLP are log–specific com-
pressors. zstd is a general–purpose compressor. Values in bytes.

91

5 Evaluation

CLP encounters difficulties in correctly identifying the timestamp in the Apache, BGL,
HDFS, HealthApp, Mac, OpenStack, Proxifier, and Thunderbird datasets. Partial
identification of the timestamp is observed in the Linux dataset. As discussed in Section
5.2 on page 85, the timestamp plays a significant role in CLP’s compression process.
In datasets where the timestamp is successfully detected, CLP outperforms logzip
and zstd in terms of compression ratio as shown in Figure 5.7 on the preceding page.
By combining log–specific compression techniques with a heuristic-based extraction
approach and a general-purpose compressor, CLP leverages the benefits of both methods.

Therefore, the superior approach for log data compression is to combine log–specific
compression techniques with a general-purpose compressor. Based on the results depicted
in Figure 5.5 on the previous page, the accuracy of log templates has a negligible impact
on the final archive size. As long as the majority of templates are identified and dynamic
tokens are detected, the resulting compression ratio averages around 90% relative to
the original file size in Logzip compression.

These findings suggest that a trade-off can be made in the accuracy of log parsers to
prioritize efficiency and robustness. Additionally, as demonstrated in the CLP paper
[23], log file-specific compression offers the advantage of constructing searchable archives
for executing search queries using log templates and dynamic token dictionaries.

In conclusion, these results highlight the effects of log parsing techniques on the compres-
sion process and explain the characteristics of resulting archives, effectively answering
R2. Furthermore, in regard to R3, CLP can be recommended over Logzip, as an
efficient, accurate and robust log data compression tool, which in default mode is
straightforward to use, achieving high compression ratios and faster search results than
comparable tools [23].

5.4 Evaluation of Research Methods

The SLR contributed to the research and investigation goals O1, and O2 defined in 1.2
on page 2. It helped to distinguish parsing, compression, and search tooling, which led
to a differentiated analysis of effects, described in Section 5.3 on page 88, effectively
contributing to answering R2 and R3. It provided a basis for analyzing O3 and O4.

Considering the resource–constraints, such as time, the SLR provided more studies than
this thesis could detail in–depth. Therefore only a selection of techniques and tools
are evaluated. The SLR could have included more literature sources, which potentially
would have increased the number of relevant studies. But considering the constrains,
this would have exceeded the defined scope in 3.1.2 on page 22. Nevertheless, the
summary of these findings contributes to complementing a comprehensive overview of

92

5.4 Evaluation of Research Methods

the field. Therefore, the SLR was a necessary method, which successfully contributed
to the research goals.

The design science methodology, as a school of thought for research in computer science,
contributed to plan, structuring, and realizing the design, implementation, and evaluation
of the concepts introduced in Chapter 3 on page 21 and 4 on page 57 and evaluated in
Chapter 5 on page 81. In particular, the engineering cycle shown in Figure 3.4 on page 36,
guided the process. The iterative approach contributed to exploring design choices and
helped make informed decisions based on the implementation evaluation resulting from
the implemented treatments, which was vital for realizing O4. Conducting a benchmark
evaluation as part of the treatment validation process facilitated ongoing improvements
in the treatment design. However, the same time constraint as in the SLR applies in
the design science approach. A more rigorously planned and designed research setup,
especially for the VTE evaluation, could have helped to strengthen present arguments
further or discover more insights. For example, the reproducibility of the VTE data
could have been achieved by designing a benchmark. The current state of reproducibility
is limited to a benchmark script, which its results require manual data preparation to
result in the data shown in Section 5.2 on page 85 and Section 5.3 on page 88.

Overall the research methods contributed to fulfilling the research objectives and were
vital to answering the research questions.

93

6 Conclusion

In this thesis, the research challenges surrounding log parsing and compression were
framed and investigated, with a focus on the implications for the compression process
and resulting compressed data. The background of log data and its usage, including log
analysis, was provided in Chapter 2 on page 7.

Chapter 3 on page 21 addressed the need for log data parsing and introduced the design
problems related to log parsers and regular expression generators. To inform the design,
a SLR was conducted in Section 3.1 on page 21, exploring various log data processing
strategies that aim to parse and compress data while utilizing the resulting archive
structure for efficient search.

The implementation details were presented in Chapter 4 on page 57, which discussed
different implementation choices, such as data structures and algorithms, and their per-
formance implications. To validate the design, a benchmark was performed, measuring
the accuracy of the parser.

Chapter 5 on page 81 showcased the benchmark results, demonstrating the competitive-
ness of the design compared to 12 other parsers. Additionally, the parser results were
utilized to identify alphabetical dynamic tokens that could enhance the log compressor’s
configuration, showcasing the effects of integrating them into the compression process.
The impact of log templates derived from different log parser results on the compression
ratio was discussed.

Finally, a comparison of compression tools was conducted, leading to a recommendation
for a generally applicable log compression tool.

With this thesis, the three central research questions were addressed:

R1: How can the structure of log data be exploited to reduce storage requirements
through compressing while maintaining the ability to query the data?

R2: How do parsing and compressing log data affect its further processability?

R3: Is there a log data compression and query technology that practitioners can
use that is widely applicable while minimizing additional architectural complexity,
computational requirements, and storage space?

95

6 Conclusion

To address R1, the research question is divided into three components. The first
component focuses on the structure of log data and its potential for exploitation. The
comprehensive description of log data structure is achieved by analyzing 16 different
datasets and their mapping to the OpenTelemetry log data model. The log template
extraction framework (see Figure 3.6 on page 49) and the techniques identified (refer to
2 on page 54) are applied in the presented design to leverage the log data structure for
further processing. The second component pertains to log data compression. Log data
compressors such as Logzip and CLP can utilize the identified log structures, specifically
log templates, to efficiently compress the data. This is demonstrated through the results
in Table 5.2 on page 87 and Figure 5.6 on page 91. The third component addresses the
ability to query the compressed log data, allowing for searching with specific phrases.
Among the identified log compressors, only CLP provides this functionality. Considering
these three components, the research question R1 regarding exploiting log data structure
for reducing storage requirements through compression while maintaining queryability
is comprehensively addressed.

By utilizing the implementation and insights gained from the literature review, the
research question R2 is addressed through an examination of the effects of parsing results
on the compression ratio. This analysis focuses on a representative log compressor that
employs dictionary-based compression. Figure 5.5 on page 91 and Table 5.3 on page 88
illustrate the observed variance in log compression outcomes. Notably, the differences
in compression ratios relative to the original file size were found to be minimal. These
findings suggest that a trade-off can be made, placing equal importance on the efficiency
and robustness of log parsers alongside the pursuit of optimal accuracy.

The comparison presented in Figure 5.7 on page 91 highlights the difference in compres-
sion ratios between general–purpose compressors like zstd and specialized dictionary-
based log compressors such as Logzip and CLP. The experimental results indicate
that, in general, specialized log compressors outperformed general-purpose compressors,
with only 2 cases out of the 16 considered showing different outcomes. Notably, when
all positively impacting factors were present, such as accurate identification of the
timestamp format and utilization of high-quality templates, a significant improvement in
compression ratio was observed. Based on these results and with regard to the research
question R3, CLP can be recommended as a technology with high compression–ratios,
fast compression, and query capabilities.

Almost all corresponding objectives described in 1.2 on page 2, which were bases for
the question, could be achieved. However, O3 could only be partially fulfilled. The aim
described a performance analysis of all researched parsers, but this turned out to be an
overestimation of doable work. This is partially fulfilled by the results shown in Section
5.1 on page 82 and Section 5.2 on page 85 because all the tools evaluated are a subset
of the found tools presented in Section 3.1 on page 21.

96

6.1 Validity

This thesis makes several contributions to the field of log parsing and compression.
It provides a SLR that explores the field of log analysis, specifically focusing on log
parsing, compression, and the ability to query compressed data. In addition, this review
provides an overview of the field’s current state. The thesis presents a novel log parser
design demonstrating high accuracy, efficiency, and robustness. The effectiveness of
this design is validated through two benchmark evaluations, supporting its practical
applicability. Additionally, the thesis proposes an innovative approach for identifying
purely alphabetical variable tokens, which can be utilized to fine-tune the configuration
of log compressors like CLP. This approach contributes to optimizing the compression
ratio by using purely alphabetical variable tokens, which the investigated log compressors
struggled with. Furthermore, the thesis investigates the effects of parsing results on log
compression. Analyzing and comparing the compression results provides insights into
the relationship between parsing results and their impact on compression. Lastly, the
thesis explores the impact of log compression techniques on the resulting compressed
data. Through evaluations, it shows the benefits and limitations of different compression
methods. It also shows the overall effectiveness of log compression techniques by
comparing three compressors.

6.1 Validity

This section details the validity concerns and countermeasures taken.

The conclusion validity is concerned with the relationship between treatment and out-
come. By using well–studied datasets for all experiments, without excluding any of
them, the validity threat of unconsciously fishing for good results is avoided. This is
further reinforced by using two benchmark implementations, increasing the reliability
of measures. The conclusions are based on statistical observations and measurements,
increasing the conclusion’s validity. The elements that may have disturbed and intro-
duced noise in the experiments are present, but countermeasures like using the same
machine have been taken. Additionally, the experiments with sensible execution times
are run multiple times, where the mean is used to counter these noisy results. The
experiments that took a long time, i.e., more than 5 minutes, were only run once, which
weakens the conclusion’s validity.

External validity describes the generalization or whether the cause-and-effect relationship
is valid when applied to a different population, e.g., log data, log parsers, or log
compressors. This thesis does not claim the investigated datasets to represent all
log data but still cover a wide–range of different log formats and origins. The 16
datasets the experiments conducted with are diverse in the context of their origin and
internal structure. The logs originated from distributed systems (HDFS, Hadoop, Spar,

97

6 Conclusion

Zookeeper, OpenStack), supercomputers (BGL, HPC, Thunderbird), operating systems
(Windows, Linux, Mac), mobile systems (Android, HealthApp), server applications
(Apache, OpenSSH) and standalone software (Proxifier). Therefore the logs cover many
systems, increasing the external validity. Although unusual, logs can have multiple
formats within the same file. However, the analyzed logs did not exhibit such a scenario
in this study. Furthermore, this thesis acknowledges numerous additional scenarios
beyond the scope of its coverage, including different log data formats, timestamp formats,
complex templates, or an even larger number of templates.

The internal validity is strengthened by the selection of well–studied datasets. Further-
more, using two benchmark implementations that produced consistent results adds to
the strengthening of internal validity. The results of both benchmarks were compared
with the results of other studies, such as by Zhu et al. [10] or Fu et al. [68], where the
Parsing Accuracy (PA) is used to measure the effectiveness. However, it is essential to
consider potential threats to internal validity, such as historical events. The 16 datasets
and their ground-truth templates are stored in a GitHub repository. Since their initial
release in 2019, the ground-truth templates have been updated once, which may affect
comparability with previous studies. Therefore the current versions of the datasets
could still contain errors unknown so far, which potentially had unknown effects on this
thesis. This revision had a minimal impact on the previous results, resulting in a change
of less than one percentage point compared to the original result, which in the future
could be revised again. The results of the CLP compression, provisioned with the alpha-
betical dynamic tokens generated by VTE, strongly depend on the configuration file’s
correctness. This was mitigated by comparing the results against a baseline consisting
of the same configuration file lacking the custom regular expressions. The SLR relied
on only two research databases, which increases the possibility of missing relevant kinds
of literature not present in those databases. Additionally, literature such as proposals
not listed in the databases was ignored, potentially resulting in the omission of valuable
knowledge. Moreover, there is a chance that relevant papers were overlooked during the
search of the databases using the defined queries. The review was conducted solely by
the author, without the involvement of external experts, which introduces a potential
threat to internal validity. To mitigate the risk of missing relevant papers, a snowballing
methodology is applied (refer to 3.1.2 on page 23). Another validity threat is that
the content of the papers might be misunderstood, and the resulting analysis, i.e., the
description of the tools and designs of the corresponding research papers, is flawed. The
source code was only partially and superficially checked, which mainly focused on the
parsers used for the accuracy comparison in Table 5.1 on page 81. A complete check
would have required more resources.

98

6.2 Related Work

6.2 Related Work

There are two surveys and a design proposal for a log parser that are closely related to
this thesis. El–Masri et al. have conducted an SLR, investigating log parser techniques,
without the consideration of log compression and the search on compressed data,
but most of investigated parser techniques overlap with the techniques investigated
in this thesis [9]. They presented a quality model to measure parsing techniques.
They also identified and recommended research directions for log parsing. Chen et al.
presented a broad overview of the field of log analysis, with a focus on log parsing,
compression, and mining [44] in the context of reliability engineering. They described
the characteristics, challenges, and a selection of available techniques and tools but did
not compare compression ratios or the impact of parsing results on the compression
process. Additionally, the parser clustering method by Sedki et al. is used in the
implementation of VTEP [22]. This method provides a simple but efficient clustering
method, which is extended and modified by the aspects described in Section 4.3 on
page 60.

6.3 Further Research

The design of the parser currently operates in offline mode. Further research could be
conducted to adapt to an online mode, enabling the processing of stream–like log data
sources, which could be combined with a log compressor utilizing the results. This could
lead to a design for an end–to–end log analytics or compression platform.

Additionally, a case–study in an industrial setting could be helpful to investigate the
applicability of the design in a different and realistic context, such as anomaly detection,
other than log compression. This would also increase the external validity by applying
the concept to a different context.

Further research could be conducted on the implications of intersecting regular ex-
pressions provided to log compressors. Initial observations suggest that these regular
expressions may match unwanted tokens, causing them to be included in the variable
dictionary. This, in turn, leads to over–generalization of log templates. However, due to
time constraints, no comprehensive research could be conducted on this topic.

A comprehensive comparison of the performance of searching compressed log data, in-
cluding dictionary–based compressors, could be conducted. This thesis only investigates
three compressors and their compression ratios without investigating the search perfor-
mance, i.e., decompressing and applying the search term, and the difference between
the need to completely decompress the archive and being able to partially decompress.

99

6 Conclusion

This could lead to a more comprehensive understanding of the log archives and their
benefits and limitations.

6.4 Perspective

In the short term, designing problem–solving solutions utilizing state–of–the–art log
parsing techniques could consolidate and prove the usefulness of these techniques.
This could be in the domain of fault- and anomaly detection. Unfortunately, these
solutions often only make sense in enterprise environments where highly complex systems
are deployed. An easy–to–use log archiving solution whose sole purpose is to reduce
the storage requirements and cost while conforming to regulations, such as security
compliance requiring a certain period of log availability, could be an option with a low
entry barrier. This needs to consider log data transmission with either uncompressed or
compressed data or log data aggregation functionalities based on compressed data. In
the long term, existing log management platforms could adapt to this technology to
reduce the cost of storage while maintaining the ability to perform search on the stored
data. While services, such as Elasticsearch, Datadog, or Splunk, use inverted indices to
enable fast search on data, the downside of it is the storage overhead inverted indices
cause. It would be beneficial if the log parsing and compression technology would prove
its usefulness and experience adaptation so a more efficient alternative for log data
management would be available.

100

Bibliography

[1] B W Kernighan and R Pike. The Practice of Programming. Addison-Wesley
professional computing series. Addison-Wesley, 1999. isbn: 9780201615869. url:
https://books.google.de/books?id=j9T6AgAAQBAJ.

[2] Jeanderson Candido, Mauricio Aniche, and Arie Van Deursen. ‘Log-based software
monitoring: a systematic mapping study’. In: PeerJ Computer Science 7:e489 ().
doi: 10.7717/peerj-cs.489.

[3] Pinjia He et al. ‘Towards Automated Log Parsing for Large-Scale Log Data
Analysis’. In: IEEE Transactions on Dependable and Secure Computing 15.6
(2018), pp. 931–944. doi: 10.1109/TDSC.2017.2762673.

[4] Jack Lou and Devesh Agrawal. Reducing Logging Cost by Two Orders of Magnitude
using CLP | Uber Blog. Sept. 2022. url: https://www.uber.com/en-
DE/blog/reducing-logging-cost-by-two-orders-of-magnitude-

using-clp/.

[5] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. ‘Characterizing logging practices
in open-source software’. In: 2012 34th International Conference on Software
Engineering (ICSE). IEEE, June 2012, pp. 102–112. isbn: 978-1-4673-1066-6. doi:
10.1109/ICSE.2012.6227202.

[6] Polly Traylo. State of Unstructured Data Management Report. Tech. rep. Komprise,
2022. url: https://www.komprise.com/blog/2022-survey-the-top-
five-trends-in-unstructured-data-management/.

[7] Max Landauer et al. ‘System log clustering approaches for cyber security applica-
tions: A survey’. In: Computers and Security 92 (May 2020). issn: 01674048. doi:
10.1016/J.COSE.2020.101739.

[8] Shubham Jain, Amy De Buitleir, and Enda Fallon. ‘A Review of Unstructured Data
Analysis and Parsing Methods’. In: 2020 International Conference on Emerging
Smart Computing and Informatics, ESCI 2020 (Mar. 2020), pp. 164–169. doi:
10.1109/ESCI48226.2020.9167588.

[9] Diana El-Masri et al. ‘A systematic literature review on automated log abstraction
techniques’. In: Information and Software Technology 122 (June 2020). issn:
09505849. doi: 10.1016/j.infsof.2020.106276.

101

https://books.google.de/books?id=j9T6AgAAQBAJ
https://doi.org/10.7717/peerj-cs.489
https://doi.org/10.1109/TDSC.2017.2762673
https://www.uber.com/en-DE/blog/reducing-logging-cost-by-two-orders-of-magnitude-using-clp/
https://www.uber.com/en-DE/blog/reducing-logging-cost-by-two-orders-of-magnitude-using-clp/
https://www.uber.com/en-DE/blog/reducing-logging-cost-by-two-orders-of-magnitude-using-clp/
https://doi.org/10.1109/ICSE.2012.6227202
https://www.komprise.com/blog/2022-survey-the-top-five-trends-in-unstructured-data-management/
https://www.komprise.com/blog/2022-survey-the-top-five-trends-in-unstructured-data-management/
https://doi.org/10.1016/J.COSE.2020.101739
https://doi.org/10.1109/ESCI48226.2020.9167588
https://doi.org/10.1016/j.infsof.2020.106276

Bibliography

[10] Jieming Zhu et al. ‘Tools and Benchmarks for Automated Log Parsing’. In: 2019
IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). 2019, pp. 121–130. doi: 10.1109/ICSE-
SEIP.2019.00021.

[11] Barbara Kitchenham and Stuart M Charters. Guidelines for performing Systematic
Literature Reviews in Software Engineering. Tech. rep. 2007. url: https://www.
researchgate.net/publication/302924724.

[12] Roel J. Wieringa. Design Science Methodology for Information Systems and
Software Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. isbn:
978-3-662-43838-1. doi: 10.1007/978-3-662-43839-8.

[13] Byung Chul Tak et al. ‘LOGAN: Problem Diagnosis in the Cloud Using Log-
Based Reference Models’. In: 2016 IEEE International Conference on Cloud
Engineering (IC2E). IEEE, Apr. 2016, pp. 62–67. isbn: 978-1-5090-1961-8. doi:
10.1109/IC2E.2016.12.

[14] Pinjia He et al. ‘Drain: An Online Log Parsing Approach with Fixed Depth Tree’.
In: 2017 IEEE International Conference on Web Services (ICWS). 2017, pp. 33–40.
doi: 10.1109/ICWS.2017.13.

[15] Yu Bai, Yongwei Chi, and Dan Zhao. ‘PatCluster: A Top-Down Log Parsing
Method Based on Frequent Words’. In: IEEE Access 11 (2023), pp. 8275–8282.
issn: 2169-3536. doi: 10.1109/ACCESS.2023.3239012. url: https://
ieeexplore.ieee.org/document/10024775/.

[16] Ran Tian et al. ‘LogDAC: A Universal Efficient Parser-based Log Compression
Approach’. In: ICC 2022 - IEEE International Conference on Communications.
2022, pp. 3679–3684. doi: 10.1109/ICC45855.2022.9838258.

[17] Jinyang Liu et al. ‘Logzip: Extracting Hidden Structures via Iterative Clustering
for Log Compression’. In: 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 2019, pp. 863–873. doi: 10.1109/ASE.
2019.00085.

[18] Weibin Meng et al. ‘LogParse: Making Log Parsing Adaptive through Word Clas-
sification’. In: 2020 29th International Conference on Computer Communications
and Networks (ICCCN). 2020, pp. 1–9. doi: 10.1109/ICCCN49398.2020.
9209681.

[19] Min Du and Feifei Li. ‘Spell: Online Streaming Parsing of Large Unstructured
System Logs’. In: IEEE Transactions on Knowledge and Data Engineering 31.11
(2019), pp. 2213–2227. doi: 10.1109/TKDE.2018.2875442.

[20] E. Ukkonen. ‘On-line construction of suffix trees’. In: Algorithmica 14.3 (Sept.
1995), pp. 249–260. issn: 0178-4617. doi: 10.1007/BF01206331.

102

https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://www.researchgate.net/publication/302924724
https://www.researchgate.net/publication/302924724
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1109/IC2E.2016.12
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ACCESS.2023.3239012
https://ieeexplore.ieee.org/document/10024775/
https://ieeexplore.ieee.org/document/10024775/
https://doi.org/10.1109/ICC45855.2022.9838258
https://doi.org/10.1109/ASE.2019.00085
https://doi.org/10.1109/ASE.2019.00085
https://doi.org/10.1109/ICCCN49398.2020.9209681
https://doi.org/10.1109/ICCCN49398.2020.9209681
https://doi.org/10.1109/TKDE.2018.2875442
https://doi.org/10.1007/BF01206331

Bibliography

[21] D. S. Hirschberg. ‘A linear space algorithm for computing maximal common
subsequences’. In: Communications of the ACM 18.6 (June 1975), pp. 341–343.
issn: 0001-0782. doi: 10.1145/360825.360861.

[22] Issam Sedki et al. ‘An Effective Approach for Parsing Large Log Files’. In: 2022
IEEE International Conference on Software Maintenance and Evolution (ICSME).
2022, pp. 1–12. doi: 10.1109/ICSME55016.2022.00009.

[23] Kirk Rodrigues, Yu Luo, and Ding Yuan. ‘CLP: Efficient and Scalable Search
on Compressed Text Logs’. In: 15th USENIX Symposium on Operating Systems
Design and Implementation. Ed. by Angela Demke Brown and Jay R Lorch.
USENIX Association, 2021, pp. 183–198. url: https://www.usenix.org/
conference/osdi21/presentation/rodrigues.

[24] Wen Xia et al. ‘The Design of Fast Content-Defined Chunking for Data Deduplica-
tion Based Storage Systems’. In: IEEE Transactions on Parallel and Distributed
Systems 31.9 (Sept. 2020), pp. 2017–2031. issn: 1045-9219. doi: 10.1109/TPDS.
2020.2984632.

[25] Athicha Muthitacharoen, Benjie Chen, and David Mazières. ‘A low-bandwidth
network file system’. In: Proceedings of the eighteenth ACM symposium on Op-
erating systems principles. New York, NY, USA: ACM, Oct. 2001, pp. 174–187.
isbn: 1581133898. doi: 10.1145/502034.502052.

[26] M O Rabin. Fingerprinting by Random Polynomials. Center for Research in
Computing Technology: Center for Research in Computing Technology. Center
for Research in Computing Techn., Aiken Computation Laboratory, Univ., 1981.
url: https://books.google.de/books?id=Emu_tgAACAAJ.

[27] The rsync algorithm. url: https://rsync.samba.org/tech_report/
node2.html.

[28] Bo Feng, Chentao Wu, and Jie Li. ‘MLC: An Efficient Multi-level Log Compression
Method for Cloud Backup Systems’. In: 2016 IEEE Trustcom/BigDataSE/ISPA.
2016, pp. 1358–1365. doi: 10.1109/TrustCom.2016.0215.

[29] Wen Xia et al. ‘FastCDC: A Fast and Efficient Content-Defined Chunking Ap-
proach for Data Deduplication’. In: Proceedings of the 2016 USENIX Conference
on Usenix Annual Technical Conference. USENIX ATC ’16. USA: USENIX Asso-
ciation, 2016, pp. 101–114. isbn: 9781931971300.

[30] Peng Zhou et al. ‘UltraCDC:A Fast and Stable Content-Defined Chunking Algo-
rithm for Deduplication-based Backup Storage Systems’. In: 2022 IEEE Interna-
tional Performance, Computing, and Communications Conference (IPCCC). IEEE,
Nov. 2022, pp. 298–304. isbn: 978-1-6654-8018-5. doi: 10.1109/IPCCC55026.
2022.9894295.

103

https://doi.org/10.1145/360825.360861
https://doi.org/10.1109/ICSME55016.2022.00009
https://www.usenix.org/conference/osdi21/presentation/rodrigues
https://www.usenix.org/conference/osdi21/presentation/rodrigues
https://doi.org/10.1109/TPDS.2020.2984632
https://doi.org/10.1109/TPDS.2020.2984632
https://doi.org/10.1145/502034.502052
https://books.google.de/books?id=Emu_tgAACAAJ
https://rsync.samba.org/tech_report/node2.html
https://rsync.samba.org/tech_report/node2.html
https://doi.org/10.1109/TrustCom.2016.0215
https://doi.org/10.1109/IPCCC55026.2022.9894295
https://doi.org/10.1109/IPCCC55026.2022.9894295

Bibliography

[31] Wen Xia et al. ‘A Comprehensive Study of the Past, Present, and Future of Data
Deduplication’. In: Proceedings of the IEEE 104.9 (Sept. 2016), pp. 1681–1710.
issn: 0018-9219. doi: 10.1109/JPROC.2016.2571298.

[32] Bryan Cantrill. Visualizing Distributed Systems with Statemaps - Bryan Cantrill,
Joyent - YouTube. Dec. 2018. url: https://www.youtube.com/watch?v=
U4E0QxzswQc.

[33] Shkuro Yuri. Mastering Distributed Tracing : Analyzing Performance in Mi-
croservices and Complex Systems. Expert Insight. Packt Publishing, 2019. isbn:
9781788628464.

[34] Kua and Patrick. An Appropriate Use of Metrics. 2013. url: https://martinfowler.
com/articles/useOfMetrics.html.

[35] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Ag-
ile Toolkit. USA: Addison-Wesley Longman Publishing Co., Inc., 2003. isbn:
0321150783.

[36] Paul Barham et al. ‘Magpie: Online Modelling and Performance-aware Systems’. In:
9th Workshop on Hot Topics in Operating Systems (HotOS IX). Lihue, HI: USENIX
Association, May 2003. url: https://www.usenix.org/conference/
hotos- ix/magpie- online- modelling- and- performance- aware-

systems.

[37] OpenTelemetry. url: https://opentelemetry.io/.

[38] Jaeger: open source, end-to-end distributed tracing. url: https://www.jaegertracing.
io/.

[39] Varun Chandola, Arindam Banerjee, and Vipin Kumar. ‘Anomaly detection’.
In: ACM Computing Surveys 41.3 (July 2009), pp. 1–58. issn: 0360-0300. doi:
10.1145/1541880.1541882.

[40] Ke Wang and Salvatore J. Stolfo. ‘Anomalous Payload-Based Network Intrusion
Detection’. In: International Symposium on Recent Advances in Intrusion Detec-
tion. 2004, pp. 203–222. url: http://link.springer.com/10.1007/978-
3-540-30143-1_11.

[41] Max Landauer et al. ‘Deep Learning for Anomaly Detection in Log Data: A
Survey’. In: (July 2022). doi: 10.1016/j.mlwa.2023.100470.

[42] Maram Alamri and Mourad Ykhlef. ‘Survey of Credit Card Anomaly and Fraud
Detection Using Sampling Techniques’. In: Electronics 11.23 (Dec. 2022), p. 4003.
issn: 2079-9292. doi: 10.3390/electronics11234003.

[43] Junyu Wei et al. ‘LogGrep: Fast and Cheap Cloud Log Storage by Exploiting both
Static and Runtime Patterns’. In: EuroSys ’ 23 (). doi: 10.1145/3552326.
3567484. url: https://doi.org/10.1145/3552326.3567484.

104

https://doi.org/10.1109/JPROC.2016.2571298
https://www.youtube.com/watch?v=U4E0QxzswQc
https://www.youtube.com/watch?v=U4E0QxzswQc
https://martinfowler.com/articles/useOfMetrics.html
https://martinfowler.com/articles/useOfMetrics.html
https://www.usenix.org/conference/hotos-ix/magpie-online-modelling-and-performance-aware-systems
https://www.usenix.org/conference/hotos-ix/magpie-online-modelling-and-performance-aware-systems
https://www.usenix.org/conference/hotos-ix/magpie-online-modelling-and-performance-aware-systems
https://opentelemetry.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://doi.org/10.1145/1541880.1541882
http://link.springer.com/10.1007/978-3-540-30143-1_11
http://link.springer.com/10.1007/978-3-540-30143-1_11
https://doi.org/10.1016/j.mlwa.2023.100470
https://doi.org/10.3390/electronics11234003
https://doi.org/10.1145/3552326.3567484
https://doi.org/10.1145/3552326.3567484
https://doi.org/10.1145/3552326.3567484

Bibliography

[44] Zhuangbin Chen et al. ‘A Survey on Automated Log Analysis for Reliability
Engineering’. In: 2021. A Survey on Automated Log Analysis for Reliability En-
gineering. ACM Comput. Surv 1 (2021), p. 37. doi: 10.1145/3460345. url:
https://doi.org/10.1145/3460345.

[45] R. Vaarandi. ‘A data clustering algorithm for mining patterns from event logs’. In:
Proceedings of the 3rd IEEE Workshop on IP Operations & Management (IPOM
2003) (IEEE Cat. No.03EX764). IEEE, pp. 119–126. isbn: 0-7803-8199-8. doi:
10.1109/IPOM.2003.1251233.

[46] Keiichi Shima. Length Matters: Clustering System Log Messages using Length of
Words. 2016.

[47] Hossein Hamooni et al. ‘LogMine’. In: Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. New York, NY, USA:
ACM, Oct. 2016, pp. 1573–1582. isbn: 9781450340731. doi: 10.1145/2983323.
2983358.

[48] Liang Tang, Tao Li, and Chang-Shing Perng. ‘LogSig’. In: Proceedings of the
20th ACM international conference on Information and knowledge management.
New York, NY, USA: ACM, Oct. 2011, pp. 785–794. isbn: 9781450307178. doi:
10.1145/2063576.2063690.

[49] Qiang Fu et al. ‘Execution Anomaly Detection in Distributed Systems through
Unstructured Log Analysis’. In: 2009 Ninth IEEE International Conference on
Data Mining. IEEE, Dec. 2009, pp. 149–158. isbn: 978-1-4244-5242-2. doi: 10.
1109/ICDM.2009.60.

[50] Zhen Ming Jiang et al. ‘Abstracting Execution Logs to Execution Events for Enter-
prise Applications (Short Paper)’. In: 2008 The Eighth International Conference
on Quality Software. 2008, pp. 181–186. doi: 10.1109/QSIC.2008.50.

[51] Masayoshi Mizutani. ‘Incremental Mining of System Log Format’. In: 2013 IEEE
International Conference on Services Computing. IEEE, June 2013, pp. 595–602.
isbn: 978-0-7695-5026-8. doi: 10.1109/SCC.2013.73.

[52] Adetokunbo A.O. Makanju, A. Nur Zincir-Heywood, and Evangelos E. Milios.
‘Clustering event logs using iterative partitioning’. In: Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining.
New York, NY, USA: ACM, June 2009, pp. 1255–1264. isbn: 9781605584959. doi:
10.1145/1557019.1557154.

[53] Meiyappan Nagappan and Mladen A Vouk. ‘Abstracting log lines to log event
types for mining software system logs’. In: 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010). 2010, pp. 114–117. doi: 10.1109/
MSR.2010.5463281.

105

https://doi.org/10.1145/3460345
https://doi.org/10.1145/3460345
https://doi.org/10.1109/IPOM.2003.1251233
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1145/2063576.2063690
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1109/QSIC.2008.50
https://doi.org/10.1109/SCC.2013.73
https://doi.org/10.1145/1557019.1557154
https://doi.org/10.1109/MSR.2010.5463281
https://doi.org/10.1109/MSR.2010.5463281

Bibliography

[54] Salma Messaoudi et al. ‘A Search-Based Approach for Accurate Identification of
Log Message Formats’. In: 2018 IEEE/ACM 26th International Conference on
Program Comprehension (ICPC). 2018, pp. 167–16710. isbn: 978-1-4503-5714-2.

[55] Amey Agrawal et al. ‘Delog: A High-Performance Privacy Preserving Log Filtering
Framework’. In: 2019 IEEE International Conference on Big Data (Big Data).
2019, pp. 1739–1748. doi: 10.1109/BigData47090.2019.9006218.

[56] Amey Agrawal, Rohit Karlupia, and Rajat Gupta. ‘Logan: A Distributed Online
Log Parser’. In: 2019 IEEE 35th International Conference on Data Engineering
(ICDE). 2019, pp. 1946–1951. doi: 10.1109/ICDE.2019.00211.

[57] Hetong Dai et al. ‘Logram: Efficient Log Parsing Using nn-Gram Dictionaries’.
In: IEEE Transactions on Software Engineering 48.3 (2022), pp. 879–892. doi:
10.1109/TSE.2020.3007554.

[58] Tong Xiao et al. ‘LPV: A Log Parser Based on Vectorization for Offline and Online
Log Parsing’. In: 2020 IEEE International Conference on Data Mining (ICDM).
2020, pp. 1346–1351. doi: 10.1109/ICDM50108.2020.00175.

[59] Shaohan Huang et al. ‘Paddy: An Event Log Parsing Approach using Dynamic Dic-
tionary’. In: NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management
Symposium. 2020, pp. 1–8. doi: 10.1109/NOMS47738.2020.9110435.

[60] Oihana Coustie et al. ‘METING: A Robust Log Parser Based on Frequent n-Gram
Mining’. In: 2020 IEEE International Conference on Web Services (ICWS). IEEE,
Oct. 2020, pp. 84–88. isbn: 978-1-7281-8786-0. doi: 10.1109/ICWS49710.2020.
00018. url: https://ieeexplore.ieee.org/document/9283937/.

[61] Arthur Vervaet, Raja Chiky, and Mar Callau-Zori. ‘USTEP: Unfixed Search
Tree for Efficient Log Parsing’. In: 2021 IEEE International Conference on Data
Mining (ICDM). IEEE, Dec. 2021, pp. 659–668. isbn: 978-1-6654-2398-4. doi:
10.1109/ICDM51629.2021.00077. url: https://ieeexplore.ieee.
org/document/9679005/.

[62] Luyue Fang et al. ‘QuickLogS: A Quick Log Parsing Algorithm based on Template
Similarity’. In: 2021 IEEE 20th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom). IEEE, Oct. 2021,
pp. 1085–1092. isbn: 978-1-6654-1658-0. doi: 10.1109/TrustCom53373.2021.
00148. url: https://ieeexplore.ieee.org/document/9724506/.

[63] Shijie Zhang and Gang Wu. ‘Efficient Online Log Parsing with Log Punctuations
Signature’. In: Applied Sciences 11.24 (Dec. 2021), p. 11974. issn: 2076-3417.
doi: 10.3390/app112411974. url: https://www.mdpi.com/2076-
3417/11/24/11974.

106

https://doi.org/10.1109/BigData47090.2019.9006218
https://doi.org/10.1109/ICDE.2019.00211
https://doi.org/10.1109/TSE.2020.3007554
https://doi.org/10.1109/ICDM50108.2020.00175
https://doi.org/10.1109/NOMS47738.2020.9110435
https://doi.org/10.1109/ICWS49710.2020.00018
https://doi.org/10.1109/ICWS49710.2020.00018
https://ieeexplore.ieee.org/document/9283937/
https://doi.org/10.1109/ICDM51629.2021.00077
https://ieeexplore.ieee.org/document/9679005/
https://ieeexplore.ieee.org/document/9679005/
https://doi.org/10.1109/TrustCom53373.2021.00148
https://doi.org/10.1109/TrustCom53373.2021.00148
https://ieeexplore.ieee.org/document/9724506/
https://doi.org/10.3390/app112411974
https://www.mdpi.com/2076-3417/11/24/11974
https://www.mdpi.com/2076-3417/11/24/11974

Bibliography

[64] Guojun Chu et al. ‘Prefix-Graph: A Versatile Log Parsing Approach Merging Prefix
Tree with Probabilistic Graph’. In: 2021 IEEE 37th International Conference on
Data Engineering (ICDE). IEEE, Apr. 2021, pp. 2411–2422. isbn: 978-1-7281-9184-
3. doi: 10.1109/ICDE51399.2021.00274. url: https://ieeexplore.
ieee.org/document/9458609/.

[65] Armin Catovic et al. ‘Linnaeus: A highly reusable and adaptable ML based log
classification pipeline’. In: 2021 IEEE/ACM 1st Workshop on AI Engineering
- Software Engineering for AI (WAIN). IEEE, May 2021, pp. 11–18. isbn: 978-
1-6654-4470-5. doi: 10.1109/WAIN52551.2021.00008. url: https://
ieeexplore.ieee.org/document/9474393/.

[66] Leticia Decker, Daniel Leite, and Daniele Bonacorsi. ‘Explainable Log Parsing and
Online Interval Granular Classification from Streams of Words’. In: 2022 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE). 2022, pp. 1–8. doi:
10.1109/FUZZ-IEEE55066.2022.9882710.

[67] Xuheng Wang et al. ‘SPINE: a scalable log parser with feedback guidance’. In:
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. New York, NY, USA:
ACM, Nov. 2022, pp. 1198–1208. isbn: 9781450394130. doi: 10.1145/3540250.
3549176. url: https://dl.acm.org/doi/10.1145/3540250.3549176.

[68] Ying Fu et al. ‘Investigating and improving log parsing in practice’. In: Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. New York, NY, USA: ACM, Nov.
2022, pp. 1566–1577. isbn: 9781450394130. doi: 10.1145/3540250.3558947.
url: https://dl.acm.org/doi/10.1145/3540250.3558947.

[69] Yu-Qian Zhu et al. ‘ML-Parser: An Efficient and Accurate Online Log Parser’.
In: Journal of Computer Science and Technology 37.6 (Dec. 2022), pp. 1412–
1426. issn: 1000-9000. doi: 10.1007/s11390-021-0730-4. url: https:
//link.springer.com/10.1007/s11390-021-0730-4.

[70] Hao Lin et al. ‘Cowic: A Column-Wise Independent Compression for Log Stream
Analysis’. In: 2015 15th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing. 2015, pp. 21–30. doi: 10.1109/CCGrid.2015.45.

[71] AWS Data Transfer Charges for Server and Serverless Architectures | AWS
Partner Network (APN) Blog. url: https://aws.amazon.com/blogs/
apn/aws-data-transfer-charges-for-server-and-serverless-

architectures/.

[72] All networking pricing | Virtual Private Cloud | Google Cloud. url: https:
//cloud.google.com/vpc/network-pricing#internet_egress.

[73] Shilin He et al. ‘Loghub: A Large Collection of System Log Datasets towards
Automated Log Analytics’. In: arXiv preprint arXiv:2008.06448 (Aug. 2020).

107

https://doi.org/10.1109/ICDE51399.2021.00274
https://ieeexplore.ieee.org/document/9458609/
https://ieeexplore.ieee.org/document/9458609/
https://doi.org/10.1109/WAIN52551.2021.00008
https://ieeexplore.ieee.org/document/9474393/
https://ieeexplore.ieee.org/document/9474393/
https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882710
https://doi.org/10.1145/3540250.3549176
https://doi.org/10.1145/3540250.3549176
https://dl.acm.org/doi/10.1145/3540250.3549176
https://doi.org/10.1145/3540250.3558947
https://dl.acm.org/doi/10.1145/3540250.3558947
https://doi.org/10.1007/s11390-021-0730-4
https://link.springer.com/10.1007/s11390-021-0730-4
https://link.springer.com/10.1007/s11390-021-0730-4
https://doi.org/10.1109/CCGrid.2015.45
https://aws.amazon.com/blogs/apn/aws-data-transfer-charges-for-server-and-serverless-architectures/
https://aws.amazon.com/blogs/apn/aws-data-transfer-charges-for-server-and-serverless-architectures/
https://aws.amazon.com/blogs/apn/aws-data-transfer-charges-for-server-and-serverless-architectures/
https://cloud.google.com/vpc/network-pricing#internet_egress
https://cloud.google.com/vpc/network-pricing#internet_egress

Bibliography

[74] Shilin He et al. ‘A Survey on Automated Log Analysis for Reliability Engineering’.
In: ACM Computing Surveys 54.6 (July 2022), pp. 1–37. issn: 0360-0300. doi:
10.1145/3460345. url: https://dl.acm.org/doi/10.1145/3460345.

[75] RFC 3164 - The BSD Syslog Protocol. url: https://datatracker.ietf.
org/doc/html/rfc3164.

[76] RFC 5424 - The Syslog Protocol. url: https://datatracker.ietf.org/
doc/html/rfc5424.

[77] Tigran Najaryan. oteps/0097-log-data-model.md at main · open-telemetry/oteps.
Apr. 2020. url: https://github.com/open-telemetry/oteps/blob/
main/text/logs/0097-log-data-model.md#prior-art.

[78] John Hopcroft. ‘AN n log n ALGORITHM FOR MINIMIZING STATES IN A FI-
NITE AUTOMATON’. In: Theory of Machines and Computations. Elsevier, 1971,
pp. 189–196. doi: 10.1016/B978-0-12-417750-5.50022-1. url: https:
//linkinghub.elsevier.com/retrieve/pii/B9780124177505500221.

[79] Janusz A. Brzozowski. ‘Derivatives of Regular Expressions’. In: Journal of the ACM
11.4 (Oct. 1964), pp. 481–494. issn: 0004-5411. doi: 10.1145/321239.321249.

[80] The Go Programming Language. url: https://go.dev/.

[81] araddon/dateparse: GoLang Parse many date strings without knowing format in
advance. url: https://github.com/araddon/dateparse.

[82] perlre - Perl regular expressions - Perldoc Browser. May 2023. url: https:
//perldoc.perl.org/perlre.

[83] Edward F Moore et al. ‘GEDANKEN-EXPERIMENTS ON SEQUENTIAL MA-
CHINES’. In: Automata Studies. (AM-34). Princeton University Press, 1956,
pp. 129–154. isbn: 9780691079165. url: http://www.jstor.org/stable/j.
ctt1bgzb3s.8.

[84] Janusz A. Brzozowski. ‘Canonical regular expressions and minimal state graphs
for definite events’. In: Mathematical theory of Automata. Volume 12 of MRI
Symposia Series. N.Y.: Polytechnic Press - Polytechnic Institute of Brookly, 1962,
pp. 529–561.

[85] Alfred V Aho et al. Compilers: Principles, Techniques, and Tools (2nd Edition).
USA: Addison-Wesley Longman Publishing Co., Inc., 2006. isbn: 0321486811.

[86] Jan Daciuk et al. ‘Incremental Construction of Minimal Acyclic Finite-State
Automata’. In: Computational Linguistics 26.1 (Mar. 2000), pp. 3–16. issn: 0891-
2017. doi: 10.1162/089120100561601.

108

https://doi.org/10.1145/3460345
https://dl.acm.org/doi/10.1145/3460345
https://datatracker.ietf.org/doc/html/rfc3164
https://datatracker.ietf.org/doc/html/rfc3164
https://datatracker.ietf.org/doc/html/rfc5424
https://datatracker.ietf.org/doc/html/rfc5424
https://github.com/open-telemetry/oteps/blob/main/text/logs/0097-log-data-model.md#prior-art
https://github.com/open-telemetry/oteps/blob/main/text/logs/0097-log-data-model.md#prior-art
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://linkinghub.elsevier.com/retrieve/pii/B9780124177505500221
https://linkinghub.elsevier.com/retrieve/pii/B9780124177505500221
https://doi.org/10.1145/321239.321249
https://go.dev/
https://github.com/araddon/dateparse
https://perldoc.perl.org/perlre
https://perldoc.perl.org/perlre
http://www.jstor.org/stable/j.ctt1bgzb3s.8
http://www.jstor.org/stable/j.ctt1bgzb3s.8
https://doi.org/10.1162/089120100561601

Bibliography

[87] Jan Daciuk. ‘Comparison of Construction Algorithms for Minimal, Acyclic, De-
terministic, Finite-State Automata from Sets of Strings’. In: Implementation and
Application of Automata. Ed. by Jean-Marc Champarnaud and Denis Maurel.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 255–261. isbn: 978-3-
540-44977-5. url: http://link.springer.com/10.1007/3-540-44977-
9_26.

[88] Dean N. Arden. ‘Delayed-logic and finite-state machines’. In: 2nd Annual Sympo-
sium on Switching Circuit Theory and Logical Design (SWCT 1961). IEEE, 1961,
pp. 133–151. doi: 10.1109/FOCS.1961.13.

[89] R. McNaughton and H. Yamada. ‘Regular Expressions and State Graphs for
Automata’. In: IEEE Transactions on Electronic Computers EC-9.1 (Mar. 1960),
pp. 39–47. issn: 0367-7508. doi: 10.1109/TEC.1960.5221603.

[90] S. C. Kleene. ‘Representation of Events in Nerve Nets and Finite Automata’. In:
Automata Studies. (AM-34). Princeton University Press, Dec. 1956, pp. 3–42. doi:
10.1515/9781400882618-002.

[91] perlrecharclass - Perl Regular Expression Character Classes - Perldoc Browser.
url: https://perldoc.perl.org/perlrecharclass.

109

http://link.springer.com/10.1007/3-540-44977-9_26
http://link.springer.com/10.1007/3-540-44977-9_26
https://doi.org/10.1109/FOCS.1961.13
https://doi.org/10.1109/TEC.1960.5221603
https://doi.org/10.1515/9781400882618-002
https://perldoc.perl.org/perlrecharclass

Abbreviations

API Application Programming Interface

ASCII American Standard Code for Information Interchange

AST Abstract Syntax Tree

AWS Amazon Web Services

CDC Content–Defined Chunking

CLP Compressed Log Processor

CPU Central processing unit

CSV Comma-Separated Values

DFA Deterministic Finite Automaton

GC Google Cloud

IQR Interquartile Range

JSON JavaScript Object Notation

LCS Longest Common Subsequence

NLP Natural Language Processing

NSGA–II Non–dominated Sorting Genetic Algorithm II

PID Process Identifier

PRI Priority Facility Severity

RAM Random Access Memory

RUM Real User Monitoring

SLR Systematic Literature Review

111

SVM Support Vector Machines

TID Thread Identifier

VTE Variable Template Extractor

VTEP Variable Template Extraction Parser

112

List of Figures

2.1 Two applications for prefix–trees (a) can match an input string on the
fly; (b) can group similar strings based on length and common prefix . . 11

2.2 Exemplary dictionary compression with single and multiple levels . . . 14

3.1 The number of literature returned by the query on IEEE Xplore before
applying the inclusion and exclusion criteria. 23

3.2 The selection process of the conducted SLR 26
3.3 The number of literature in the final set after applying all criteria 27
3.4 The engineering cycle, as proposed by Roel Wieringa in ‘Design Science

Methodology for Information Systems and Software Engineering’ [12] . 36
3.5 An illustrative extraction of log templates which uses log entries from

the loghub Spark dataset [73] . 41
3.6 Log template extraction framework in offline mode 49
3.7 Log template extraction framework in online mode 50
3.8 CLPs variable dictionary approach applied to production logs 51
3.9 CLPs process of querying compressed data 53
3.10 The architecture to generate regular expressions for the configuration

files of log compressors for identifying difficult dynamic tokens. 56

4.1 UML class diagram of VTE Configuration Struct 59
4.2 UML class diagram ofVTEP . 61
4.3 UML activity diagram of the parsing process 62
4.4 UML activity diagram of the regex parse process 69
4.5 Real–world dynamic tokens from the Hadoop datasets are transformed

to regular expressions using a prefix–tree and DFA minimization 75
4.6 An exemplary DFA to demonstrate Brzozowski Algebraic Method . . . 76
4.7 UML class–like diagram of the regex package with PrefixTree and Hopcroft

minimization . 76

5.1 Architecture of VTEP evaluation . 82
5.2 Effectivness of log parsers based on execution time of the parsing process

with increasing log volumne . 83
5.3 Among 12 other parsers, VTE has a competitive mean. VTE+ achieving

the highest mean. Sorted by mean. 84

113

List of Figures

5.4 Architecture of VTE evaluation . 85
5.5 Architecture of parser results evaluation using Logzip as compressor. . 91
5.6 Logzip compression with templates from VTE+, Drain, and Revised

compared to the original file size. Values in bytes. 91
5.7 Comparison of three compressors. Logzip and CLP are log–specific

compressors. zstd is a general–purpose compressor. Values in bytes. . . 91

114

List of Tables

3.1 Log characteristics of 16 investigated datasets 45
3.2 OpenTelemetry’s log data model as specified in [77] 49

4.1 Regular expressions and heuristic rules to identify token types 63

5.1 Accuracy of log parsers measured with 16 datasets and 14 parsers 81
5.2 Compression of 16 datasets with CLP. The columns Original, Default,

Custom, and VTE show compressed file sizes in bytes. Custom to VTE
and Default to VTE show the percentage difference, where positive values
indicate a compression improvement and negative values a decrease. . . 87

5.3 Compression of 15 datasets with Logzip [17]. Three log parser results are
passed to Logzip. The revised template files are found in the LogParser
project [10]. L2 and L3 are Logzip compression modes, where L2 uses a
template extraction file to match log records. L3 additionally creates a
dynamic token encoding. The size is in bytes. The match column shows
the percentage of log records that matched a log template. 88

115

Listings

1.1 Simple log record . 1

2.1 Exemplary unstructured log records . 7
2.2 Exemplary CSV log records . 8
2.3 Exemplary JSON Syslog records . 8
2.4 Log records flow for serving an image . 19
2.5 Log records flow for serving an image with an error 19

3.1 IEEE Xplore database query . 24
3.2 dblp database query . 25
3.3 Unprocessed exemplary log messages . 39
3.4 Aggregation based on the exemplary log messages 39
3.5 Apache example log messages . 46
3.6 Thunderbird example log messages . 46
3.7 Linux example log messages . 46
3.8 Apache log message mapped to Opentelemetry data model in JSON format 48

4.1 Apache log format . 65
4.2 Snippet of the VTE input file in JSON format 68
4.3 Snippet of extracted dynamic tokens from the Hadoop dataset 70

5.1 Data preparation for CLP configuration 85
5.2 Truncated snippet of the Thunderbird dataset showing alphabetical

dynamic tokens . 86
5.3 Snippet of Spark log records . 90
5.4 Templates for a specific spark log record 90

.

117

	Inhaltsverzeichnis
	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Delimitations
	1.4 Methodology
	1.5 Outline of the thesis

	2 Background
	2.1 Data
	2.1.1 Unstructured Data
	2.1.2 Semi–Structured Data
	2.1.3 Structured Data

	2.2 Log Data
	2.2.1 Parsing
	2.2.2 Compression

	2.3 Problem Solving with Log Data

	3 Concept
	3.1 Identification of Parsing, Compression and Query Strategies
	3.1.1 Motivation
	3.1.2 Review Planning
	3.1.3 Study Selection
	3.1.4 Results
	3.1.5 Discussion

	3.2 Design Method
	3.3 Problem Statement
	3.3.1 From Messy to Meaningful: The Need of Parsing Log Data
	3.3.2 The Variable Template Extraction Problems
	3.3.3 Requirements Derivation

	3.4 Design for a Logparser and Regluar Expression Generator
	3.4.1 Exploiting the Structure of Log Data
	3.4.2 Parser Design
	3.4.3 Regex Generator Design

	4 Implementation
	4.1 Overview of the Implemented System
	4.1.1 Variable Template Extraction Parser (VTEP)
	4.1.2 Variable Template Extractor (VTE)

	4.2 Configuration
	4.3 Variable Template Extraction Parser
	4.4 VTEP to VTE JSON Interface
	4.5 Variable Template Extractor
	4.6 Parser Benchmark

	5 Evaluation
	5.1 Analyzing Parsing and Performance of VTEP: Evaluating Accuracy, Efficiency, and Robustness
	5.2 Analyzing the Impact of Parsing and Custom Regular Expressions on Log Compression
	5.3 Investigating the Impact of Parsing and Compression on Log Data's Processability
	5.3.1 Parsing
	5.3.2 Compression

	5.4 Evaluation of Research Methods

	6 Conclusion
	6.1 Validity
	6.2 Related Work
	6.3 Further Research
	6.4 Perspective

	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables
	Listings

