
Master Thesis

Extension of an Embedded AI
Framework for RISC-V Systems

Pascal Pfeiffer

Matr. Nr.: 5182994

Technische Hochschule Mittelhessen

Department

Informationstechnik, Elektrotechnik und Mechatronik (IEM)

Fraunhofer Institute for Photonic Microsystems

Department

Data Communication & Computing

June 2024

First supervisor: Prof. Dr.-Ing. Hartmut Weber

Second supervisor: Dr. Andreas Weder

Preface I

Abstract
This master’s thesis presents the extension of an embedded AI framework for floating-point and
quantized neural networks. The framework is extended with 1D convolutions, batch normalization, batch
normalization folding, concatenation and global pooling while also lowering the memory requirements
for quantized neural networks.

At the beginning of this thesis, the challenges of embedded AI are explained and the RISC-V IP core used
is presented. The embedded AI framework Emmi is introduced, the fundamentals for understanding
convolutions and batch normalization are presented, and a brief overview of its features and the
quantization technique used is given.

Before implementing the extensions, Emmi is analyzed and the requirements are summarized. During the
test-driven implementation, unit and integration tests ensure the functionality of the framework. After
testing and benchmarking it on a non-vector RISC-V system, it is compiled with automatic vectorization
and tested in a RISC-V simulator that supports vector instructions.

Finally, it is shown that the framework can be used in a predictive maintenance application.

Preface II

Declaration of academic integrity
I hereby assure that the work presented is my own work. The work has been carried out independently
and exclusively using the stated sources. Contents of this work, taken verbatim or analogously from the
sources are made identifiable. The work has not yet been done before in this form and has not been
submitted for examination or published.

Pascal Pfeiffer

Preface III

Table of Contents
1 Introduction...1

1.1 Scope of Work...1
1.2 Contents of following chapters... 2

2 Fundamentals.. 3
2.1 RISC-V... 3
2.2 EMSA5... 3
2.3 Embedded AI..4
2.4 Emmi...6
2.5 Machine Learning Operations.. 7
2.6 Quantized Neural Networks..15

3 Analysis and Design..22
3.1 Software Requirements...22
3.2 Analysis of Existing Components...23
3.3 Design Decisions..25

4 Implementation... 30
4.1 Convolutional Operations... 30
4.2 One-Dimensional Pooling Operations.. 33
4.3 Batch Normalization... 35
4.4 General Improvements..40

5 Evaluation... 44
5.1 Unit Tests.. 44
5.2 Integration Tests..44
5.3 Benchmarks..46
5.4 Vectorized Testbench in Spike.. 48

6 Embedded AI Application...50
6.1 Introduction...50
6.2 State of the Art.. 50
6.3 Embedded AI Workflow...51

7 Conclusion.. 53
7.1 Summary...53
7.2 Research Questions...53
7.3 Final Outcome...53
7.4 Perspective.. 54

Preface IV

Table of Figures
Figure 1: First steps when developing an embedded AI application...5
Figure 2: Data preprocessing and model creation..5
Figure 3: build embedded AI application...5
Figure 4: Emmi Components... 6
Figure 5: Convolution for 1D inputs..8
Figure 6: Comparison of standard and depth-wise convolution on a three channel input with five elements
..9
Figure 7: 1D average and max pooling..10
Figure 8: Global 1D and 2D poolings.. 11
Figure 9: Valid and same padding.. 11
Figure 10: Dilation of 1D feature-maps... 11
Figure 11: Concatenation illustration...12
Figure 12: Histogram of a vector with floating-point elements...13
Figure 13: Batch normalization applied with β=0 and ɣ=1...13
Figure 14: Batch normalization applied with β=0 and ɣ=0.58..13
Figure 15: Batch normalization applied with β=0.05 and ɣ=0.58...13
Figure 16: Batch normalization applied with β=0, ɣ=0.58 and ϵ=0.001...14
Figure 17: Directions in a sequential model..14
Figure 18: Inference using true integer quantization...16
Figure 19: Inference using fake quantization...16
Figure 20: Average error when increasing internal feature-map bit-widths..20
Figure 21: LeNet-5 in Emmi using DYINQ and soft-float..21
Figure 22: Representation of floating-point and fixed-point numbers..21
Figure 23: Modules and namespaces of EmmiTranslator..23
Figure 24: Modules of Emmi Core.. 24
Figure 25: Modules of vmath...24
Figure 26: Repository structure of the testbenches..26
Figure 27: EmmiTranslator module model_decoder... 28
Figure 28: New Emmi Core modules.. 29
Figure 29: Emmi Core modules layers_flt and layers_q32...29
Figure 30: Process of testing a folded model...37
Figure 31: Activity diagram of function translate_model()...39
Figure 32: Bar chart created with the EmmiTranslator runtime tool...43
Figure 33: Signals within the timeseries dataset..45
Figure 34: Layers of a LeNet-5..46
Figure 35: Layers of the model network-timeseries-conv1D-category-fun-bn...47
Figure 36: Speedup of a model using batch normalization folding (soft-float)...47
Figure 37: Speedup of a model using batch normalization folding (8-bit DYINQ)....................................47
Figure 38: Sketch of the hardware setup..50
Figure 39: Overview of categories within the conveyor dataset..51
Figure 40: Demo setup of the conveyor application [52]..52

Preface V

Table of Tables
Table 1: Overview of embedded AI Frameworks..4
Table 2: Layers supported by Emmi..7
Table 3: Average error when increasing internal feature-map bit-widths..20
Table 4: New Emmi root project structure...26
Table 5: New vmath project structure.. 26
Table 6: Supported target platforms...27
Table 7: Supported compilation profiles..27
Table 8: Preconfigured activation function mappings...41
Table 9: Overview of models used in integration tests..45
Table 10: Network size and execution speed when using different datatypes for weights and biases........46
Table 11: Accuracy of different feature map bit-widths when running the MLPerf Tiny Image
Classification benchmark in Emmi.. 48
Table 12: Overview of conveyor models... 51

Preface VI

Table of Listings
Listing 1: Compare implementation of depth-wise and standard convolution..31
Listing 2: Calculate quantization parameters in a 1D convolution..31
Listing 3: Writing the bias into the ouput tensor of a 1D convolution..32
Listing 4: Inner loop of a 1D convolution... 32
Listing 5: Write result to output tensor in a 1D convolution...33
Listing 6: Calling the rescale operation...33
Listing 7: Batch normalization on axis m.. 35
Listing 8: Fake quantized implementation of batch normalization...36
Listing 9: Dependencies of Python package EmmiTranslator...38
Listing 10: Check for tensorflow-batch-normalization package..40
Listing 11: Customize a function map...42
Listing 12: Example for automatically generated C code printing feature-maps..42
Listing 13: Using the Emmi Runtime Analysis... 43

Preface VII

List of Abbreviations

AI Artificial Intelligence

AIfES Artificial Intelligence for Embedded Systems

CISC Complex Instruction Set Computer

DDR Double Data Rate

e5AIsuite EMSA5 AI Suite, today: Emmi

DTCM Data Tightly Coupled Memory

DYINQ Dynamic Inference Quantization

FPGA Field Programmable Gate Array

FPU Floating-Point Unit

GCC Gnu C Compiler

GPIO General Purpose Input Output

HAL Hardware Abstraction Layer

I2C Inter-Integrated Circuit

ISA Instruction Set Architecture

IP core Intellectual Property Core

ITCM Instruction Tightly Coupled Memory

JAQ Efficient Integer-Arithmetic-Only implemented after Jacob et al.

LSTM Long short-term memory

RAM Random Access Memory

RISC Reduced Instruction Set Computer

SPI Serial Peripheral Interface

TFLM TensorFlow Lite Micro

UART Universal Asynchronous Receiver Transmitter

Introduction 1

1 Introduction
In today's age artificial intelligence is not limited to the cloud but is seamlessly integrated into the fabric
of our devices. Embedded AI holds the potential to revolutionize various fields, including smart cities,
medical devices with advanced privacy requirements, autonomous vehicles, and the factory floor. It
integrates intelligence into everyday devices, acting as a silent orchestrator behind the scenes. [1, 2, 3]

Embedded AI systems are essential in addressing the demand for smart and diverse low power, low cost
and high efficiency applications. Embedded AI can be used to create intelligent monitoring systems that
operate on sensor signals while fully processing the data on embedded systems. This sensor data may
include information from a privacy critical application, a time-sensitive factory floor, or an agricultural
device without dedicated power supply.

The core of an embedded device capable of running neural networks is its processor. Currently, this is
often a device ISA compatible to RISC-V, which has gained popularity in recent years due to its
flexibility, scalability and, simplicity. [4]

At the Fraunhofer IPMS in Dresden the RISC-V compatible IP core EMSA5 is developed. It provides
support for running neural networks using TensorFlow Lite Micro (TFLM) [5], Artificial Intelligence for
Embedded Systems (AIfES) [6] and Emmi (formerly known as EMSA5 AI Suite) [7], an embedded AI
Framework developed at the Fraunhofer IPMS. Emmi features a vectorizable codebase, this means that it
is designed in-order to be automatically vectorized by the compiler and executed using vector
instructions. For embedded integer only RISC-V systems this is the ISA extension Zve32x. [8]

1.1 Scope of Work
This thesis will explain the fundamentals of embedded AI and is going to deal with the framework Emmi.
During this thesis the functionality and code-base of Emmi will be extended, improved and refactored. In
particular, support for 1D convolutions, 1D average and max pooling, global average and max pooling,
and the concatenation of tensors required for some residual networks will be added. In addition, several
ways to support neural networks using batch normalization will be presented and implemented in
program code. All implemented features should take into account the compiler requirements for automatic
vectorization of C code.

Besides the expansion of Emmi the thesis will evaluate Emmi in a simulator, capable of running
vectorized RISC-V code. The challenges of using a simulator will also be presented.

Introduction 2

1.1.1 Goal and Research Questions
One goal of this master thesis is to extend the functionality of the inference-only embedded AI framework
Emmi. It is currently limited to a small number of layers, which will be extended and improved.

Namely the following layers will be implemented:

• 1D convolution
• 1D average pooling

• 1D max pooling
• Global 1D & 2D poolings

• Concatenation
• Batch normalization

In addition, this work should answer the following questions:

Q1. How to implement batch normalization for Emmi and should the folding of batch normalization
parameters be considered, and if so, how can it be implemented?

Q2. How to reduce the memory footprint of quantized Emmi models?

Q3. How to improve the accuracy of quantized networks?

Q4. How to use a RISC-V simulator to run Emmi when compiling with automatic vectorization?

Besides the questions above, the following secondary points can also be addressed:

S1. Embedded AI Application Example
An Example covering the process from training to a real-world embedded AI application

S2. How to implement a depth-wise convolution?

S3. How integrate a Strassen-based matrix multiplication, replacing the current row-column
approach?

1.2 Contents of following chapters
After the introduction, the second section of this thesis gives an overview of the technical fundamentals
related to the embedded AI framework Emmi. It starts with an introduction to RISC-V, which is the main
platform for Emmi, introduces the IP core EMSA5, and gives an overview of the fundamentals of
embedded AI and the Emmi framework. It also presents the theory of the layers and operations
implemented in this work, as well as the quantization technique DYINQ. The third section analyzes the
current state of Emmi and discusses the design decisions made to extend and improve the framework.
This is followed by section four, which briefly presents the implementation of the layers and the
integration of batch normalization folding. Section five evaluates the framework’s extensions in terms of
accuracy and performance. It also covers the use of a RISC-V simulator. Section six presents an
embedded AI application and is followed by section seven, which concludes the thesis.

Fundamentals 3

2 Fundamentals
The chapter provides a comprehensive overview of the fundamental concepts and technologies used in
this work. It begins by introducing the RISC-V instruction set architecture and the IP Core EMSA5, for
which the embedded AI Framework Emmi was developed initially. It gives a brief overview of Embedded
AI, its workflow and all operations implemented during this thesis. Concluded is the chapter with and
introduction of the used quantization technique DYNQ.

2.1 RISC-V
The Instruction Set Architecture (ISA) RISC-V, pronounced "risk five," was introduced by UC Berkeley
in 2010. Its manual is licensed under the Creative Commons Attribution 4.0 International License. In
literature RISC-V is described as the world's first open-source ISA with widespread commercial backing
[9]. Currently, RISC-V International, a non-profit organization comprising members such as SiFive, Intel,
and Fraunhofer, oversees its development. [10]

The name RISC-V hints a Reduced Instruction Set Computer (RISC) architecture. It contrasts with
Complex Instruction Set Computers (CISC) like x86, which employ varying instruction lengths and aim
to cover every special case with a dedicated instruction. Despite this foundational simplicity, RISC-V
processors can incorporate more than the basic 47 instructions through ISA extensions. These extensions
introduce additional, standardized sets of instructions that hardware designers can implement to tailor
specific functionalities or enhance performance. RISC-V International has already standardized various
extensions, including the "F" extension, which introduces single-precision floating-point capabilities.
There are numerous other extensions either in development or already standardized. [11]

Vendor-specific extensions are also allowed, fostering a modular system that accommodates specialized
cores and enables designers to fine-tune their cores based on performance, power, and size considerations.

The RISC-V Vector Extension (RISC-V V) extends the instruction set to approximately 300 instructions.
It defines two subsets for embedded processors: Zve32x for 32-bit integer operations and Zve32f for 32-
bit floating-point computations. The extension Zve32x is partially supported by the IP core EMSA5,
which is introduced in the following section. [12]

2.2 EMSA5
The EMSA5 is a 32-bit RISC-V IP core developed in-house at the Fraunhofer IPMS located in Dresden.
This core offers support for a range of RISC-V instruction sets, including I, M, C, Zicsr, and Zifencei.
Furthermore, it partially accommodates the embedded vector instruction set, Zve32x.

The EMSA5 IP core comes in various configurations, offering different peripheral and memory options.
The version utilized in this thesis incorporates a set associative 64KB/4-way cache, particularly in
response to matrix multiplication benchmarks utilizing vector instructions. [7]

Moreover, the version employed in this thesis includes:

• 256 KB ITCM dedicated for program code

• 4 KB DTCM dedicated for data

• 4 KB SRAM usable for data and instructions

• 256 MB DDRRAM for data and instructions

Fundamentals 4

• Two 32-bit timers, I2C, SPI, UART, a watchdog, and eight GPIO pins.

As evaluation platform the FPGA development board Arty A7-100T is used.

2.3 Embedded AI
Embedded AI is the name for a field of technologies dealing with artificial intelligence on embedded
systems. The TinyML foundation describes embedded AI as “hardware, algorithms and software capable
of performing on-device sensor data analytics at extremely low power” [13]. When developing an
embedded AI application, a specific workflow (described in section 2.3.1) is required. It includes the
development and optimization of neural networks for specific hardware using techniques such as
approximation, batch normalization folding (section 2.5.5) and quantization (section 2.6). [14]

Currently embedded AI frameworks are primarily focused on inferences (a known exception is AIfES [6])
and deployment to embedded devices rather than the creation and training of neural networks. These
frameworks provide tools to convert and run trained models on the destination platform. Due to heavily
limited resources, compromises may be necessary when performing inferences on embedded devices. For
instance, some devices lack a floating-point unit, which necessitates converting models to integer or
fixed-point numbers, potentially resulting in reduced accuracy but a smaller size and an improved
inference time.
[35, 7]

Table 1 gives an overview of embedded AI Frameworks, many of them are vendor specific and bundled
with a manufacturers hardware, most of them are proprietary.

Table 1: Overview of embedded AI Frameworks

Framework Vendor Officially
Supported Platforms

Vendor
Specific

Proprietary Ref.

AIfES Fraunhofer IMS ARM, Atmel, RISC-V No No [6]

Cube.AI STMicroelectronics ARM Yes Yes [15]

Emmi Fraunhofer IPMS RISC-V Yes Yes [16]

DRP-AI Renesas ARM / DRP-AI Accelerator Yes Yes [17]

KRAI KRAI ARM No Yes [18]

Plumerai Plumberai ARM No Yes [19]

TFLM Google ARM, RISC-V, Xtensa No No [5]

2.3.1 Embedded AI Workflow
The workflow when developing an embedded AI application can be divided into three major steps:

1. Use case definition and requirements analysis

2. Model development

3. Embedded system deployment

All steps may vary depending on the used framework. The here described steps can be applied to TFLM,
AIfES and Emmi.

Fundamentals 5

Step 1: Use Case Definition and Requirements Analysis

A typical embedded AI workflow begins with defining the application's use case and requirements. Next,
available resources are gathered, and the hardware platform that best suits the desired use case and
requirements in terms of cost, performance and power requirements is selected. This platform may consist
of a microcontroller or FPGA with storage and connectivity options. Additionally, a preselection of
possible embedded AI frameworks is made by considering their features and supported platforms.

Step 2: Model Development

To build and train the neural network, sensor data is collected from the selected real-world scenario and
preprocessed. If not enough data is available, data augmentation, or a simulation of the scenario should be
considered. Once enough data has been gathered a model is built, trained, and tested using desktop
machine learning frameworks such as TensorFlow or PyTorch. The future embedded AI use case is
always considered while building the model, this means that the number of parameters is reduced as much
as possible, and operations and layers used are supported in at least one of the preselected embedded AI
frameworks.

Step 3: Embedded System Deployment

Following the development and training of the model, the embedded AI framework is selected. Criteria
include the usability, support of the used network architecture, memory requirements, and the support for
the used platform. The converter tool of the selected embedded AI framework is started, and the
conversion options, which include a range of optimizations from quantization to the selection of (faster)
approximated activation functions, are set. Once the model is converted, it is integrated into the
embedded application. If required, the pipeline for preprocessing and using the recorded data is
implemented. Afterwards the model is ready to be tested on the embedded system. If the generated model
is too big or too slow, the process is restarted from step “Build and train model”.

Figure 1: First steps when developing an embedded AI application

Use Case Requirements System defintion
Preselect

embedded AI
frameworks

Figure 2: Data preprocessing and model creation

Collect
sensor data

Preprocess sensor
 data Build and train model Test model

Figure 3: build embedded AI application

Convert model
Integrate model and

framework into
embedded project

Implement
preprocessing on
embedded system

Test embedded
AI application

Fundamentals 6

2.4 Emmi
Emmi is an inference-only AI framework designed to run neural networks on embedded systems. It
offers a layer-based interface for neural networks and is completely written in C. It supports floating-point
and integer operations with quantized weights, biases and feature-maps. Models for Emmi are converted
from TensorFlow Keras, while sequential and functional models are supported.

2.4.1 Components
Emmi compromises three different components as shown in Figure 4. The first component is the model
converter, which takes trained TensorFlow Keras models and converts them into C code invoking the
functionalities presented by the Emmi framework. The converter runs checks on the model, such as for
unsupported operations or model parameters. The model undergoes optimization and is exported as C
code, which consists of four files: two C implementation files (one containing the weights and one
containing the model) and two headers. When using the converted model, only a single header needs to be
included.

The second component of the framework is known as the Emmi Core and represents the interface to the
AI functionalities used by the generated models. It implements all supported activation functions
(including approximations) and layers, such as dense, convolution or pooling. The Emmi Core is included
by the C files of the converted model.

The implementations of the layers and activation functions utilize the methods of the numerical library,
which represents the third component, namely vmath. It implements all mathematical operations for
floating-point and the quantized data types. Like the layers implemented in the Emmi Core, the
functionality implemented in vmath can be automatically vectorized by the RISC-V compiler.

2.4.2 Features
Emmi supports various layers, activation functions and model architectures. One of its outstanding
features is, that each layer implemented in Emmi is optimized to be automatically vectorized by the
compiler. This results in a faster execution time, while still being compatible to a wide range of platforms
thanks to its C codebase. Emmi is tested with convolutional and residual networks and supports quantized
and floating-point models. When converting a model using the EmmiTranslator, optimizations such as the
removal of dropout layers from the inference function of the model are supported.

A complete overview of all supported layers, if the quantization is supported for those layers, and if the
implemented quantization is a true integer quantization is given in Table 2. All listed layers are

Figure 4: Emmi Components

Emmi

Emmi Core
(C Library)

Vmath
(C Library)

EmmiTranslator
(Model Converter and Python Tools)

Fundamentals 7

implemented for floating-point. Layers marked with a capital ‘X’ are implemented during the course of
this thesis.

Table 2: Layers supported by Emmi

Layer Quantization Support True Integer Quantization

Dense ✓ ✓

X Convolution 1D ✓ ✓

Convolution 2D ✓ ✓

X Depth-wise Convolution 1D ✓ ✓

X Depth-wise Convolution 2D ✓ ✓

X Max Pooling 1D ✓ ✓

Max Pooling 2D ✓ ✓

X Average Pooling 1D ✓ ✓

Average Pooling 2D ✓ ✓

X Global Max Pooling 1D ✓ ✓

X Global Max Pooling 2D ✓ ✓

X Global Average Pooling 1D ✓ ✓

X Global Average Pooling 2D ✓ ✓

Flatten ✓

Add ✓ ✓

X Concatenation ✓

X Batch Normalization ✓

2.5 Machine Learning Operations
In machine learning models are represented as graphs, where the nodes represent the layers and the edges
the dataflow. Layers are used to build the model and may contain a single or multiple operations in the
form of a subgraph. [20]

This subsection introduces all operations added, and implemented to Emmi during this thesis. Already
implemented operations are not covered. Detailed explanations for already implemented operations can
be found in “Development of a Machine Learning Framework for Quantized Neural Networks on
Embedded RISC-V Systems” [7].

2.5.1 Convolutions

Convolution 1D

Discrete convolutions enable the extraction of features from input data. They are local operations,
meaning that they only consider selected groups of elements instead of the entire sequence at once. Each
feature in the output sequence is computed based on the corresponding element in the original sequence
and its neighboring elements. This approach determines the value of the resulting feature based on its

Fundamentals 8

local context. The resulting sequence is formed progressively by moving the filter across the original
sequence. [21, 22, 23]

A convolution involves a kernel (also called filter), which is slided across the input features, performing
element-wise multiplication, and summing the results to produce a feature-map, which represents the
output vector of the convolutional operation.

S (i)=I∗K=∑
n

N

I (i+n−⌊ N
2 ⌋)⋅K (n) (1)

Where I is the feature-map of the input, K is the kernel and S (i) the output vector at position i.

Variable n is the index of the kernel, N is the number of elements in the kernel.

Within a neural network, the weights of the kernel are determined during the training. In a convolutional
layer within a neural network, an additional bias can be incorporated.

S (i)=I∗K+b=b+∑
n

N

I (i+n−⌊ N
2 ⌋)⋅K (n) (2)

Where b is the bias of the kernel.

Especially in an embedded system the required number of multiplications is of interest, since these
operations often consume more than a single clock cycle. The number of multiplications per output
feature depends on the number of channels and the number of elements per kernel. In general, larger
kernels require more multiplications.

Number of Muliplications per Output Feature=N∗c (3)

Where N is the number of Kernel elements per channel and c the number of channels.

Depth-wise Convolution 1D

Standard convolutional operations use the same kernel for all input channels, while the depth-wise
convolution involves a separate kernel for each channel to preserve the separation of channels. This
approach allows for more precise feature extraction while reducing the required number of
multiplications, as can be concluded from formula (3) since channel c is always one when performing a
depth-wise convolution.

Figure 6 compares the standard convolution with a depth-wise convolution using a sequential input with
five elements and three channels. The kernel has a size of three elements. Notice that the kernel used for
the standard convolution is as deep as the number of channels, wheres the kernel of the depth-wise
convolution is split into three kernels: one for each channel. Also the output of the depth-wise convolution

Figure 5: Convolution for 1D inputs

x x x

∑

Input

Filter / Kernel

Output

Fundamentals 9

differs from the standard convolution: It outputs a feature-map for each channel, merged to a single
tensor. [24]

Equation (4) shows how an element in the depth-wise convolution is calculated.

S (i , c)=I∗K (c)=∑
n

N

I (i+n−⌊ N
2 ⌋, c)⋅K (c)(n) (4)

Where S (i , c) is the output tensor at position i in channel c and K (c)(n) is the kernel of the channel c at

position n.

The depth-wise convolution can also be applied to two-dimensional inputs:

S (i , j , c)=I∗K (c)=∑
m

M

∑
n

N

I (i+m−⌊ M
2 ⌋, j+n−⌊ N

2 ⌋, c)⋅K (c)(m ,n) (5)

Where S (i , j , c) is the output feature-map at position (i , j) in channel c. Variables m and n index the

current position of kernel K (c) , M and N are the elements per kernel dimension.

When using a bias, the equation (4) used for a one dimensional depth-wise convolution evolves to:

S (i , c)=I∗K (c)+b(c)=b(c)+∑
n

N

I (i+n−⌊ N
2 ⌋, c)⋅K (c)(n) (6)

And the equation for a two dimensional depth-wise convolutions (5) evolves to:

S (i , j , c)=I∗K (c)+b(c)=b(c)+∑
m

M

∑
n

N

I (i+m−⌊ M
2 ⌋, j+n−⌊ N

2 ⌋, c)⋅K (c)(m ,n) (7)

Notice that a bias for each channel is used.

2.5.2 Pooling Operations
Pooling is a local operation used to down-sample the input. Pooling involves applying a sliding window
across the input, where a specific pooling function (such as max or average pooling) is applied to the
values within each window, resulting in a single output value for each window. This technique not only
helps in reducing the size of the input data but also enhances the model's ability to recognize features

Figure 6: Comparison of standard and depth-wise
convolution on a three channel input with five elements

Input

Kernel

Output

Standard Convolution Depth-wise Convolution

Fundamentals 10

regardless of their position within the input, thereby improving the model's robustness and generalization
capabilities. [21, 22]

Average Pooling 1D

Average pooling calculates the average value of all elements within the pooling window. After calculating
the average, the window is moved. Figure 7 shows a one dimensional average pooling with a window size
of four and a stride of four, meaning, that the window is moved four elements at a time. [25]

Max Pooling 1D

Max pooling writes the highest value within the pooling window into the output element. After
determining the highest value within the pooling window, the window is moved. Figure 7 shows max
pooling with a window size of four and a stride of four. [26]

Global Average Pooling 1D

Global pooling operations operate on the input of a channel instead of using a dedicated pooling window.
In global average pooling 1D, the average of the complete input series is calculated for each input
channel. Figure 8 illustrates various global pooling operations. [27]

Global Max Pooling 1D

Global max pooling 1D determines the maximum value for each channel of a sequential input. It is
illustrated in Figure 8. [28]

Global Average Pooling 2D

Global average pooling 2D is the two dimensional equivalent of global average pooling 1D, used for
input data with multiple channels. It calculates the average for each channel of the two dimensional input.
[29]

Global Max Pooling 2D

Global max pooling 2D finds the highest value for each channel in a two dimensional input, such as an
image with multiple color channels. [30]

Figure 7: 1D average and max pooling

218 3 36 3 4 1001 15 2 28 4

input average max

Fundamentals 11

2.5.3 Padding and Dilation

Padding for 1D Data

When processing sequences with a sliding window, the edges of the sequence pose a challenge due to the
lack of neighboring elements for the window to operate on. To mitigate this, two padding strategies are
commonly employed: valid padding and same padding.

Valid padding excludes the border elements from the operation, leading to a reduced output size. Same
padding, in contrast, expands the input sequence by appending zeros to its edges. This method ensures
that the output retains the same dimensions as the input. [31]

Figure 9 illustrates the application of same and valid padding with a three-element window. By adding
zeros to the input sequence's edges as in the same padding case, the window's center (marked in red)
aligns with the first element of the input.

Dilation for 1D Data

Dilation enlarges a kernel used in convolutions by inserting zeros between its elements. The right, one
dimensional kernel in Figure 10 shows a dilation of two. This means a step-width of two is required to
move from one of the kernels original elements to another. [23]

Figure 8: Global 1D and 2D poolings

3

2 5 2
3 2 1
8 3 3
6 3 4

1
0
0
1

8

2 5 2
3 2 1
8 3 3
6 3 4

1
0
0
1

global average
2D

global max
2D

6 3 4 3

4 6

global average
1D

6 3 4 3

global max
1D

Figure 9: Valid and same padding

0 0xx

same paddingvalid padding

Figure 10: Dilation of 1D feature-maps

3 61 2 4 5

without dilation with dilation

00 5 600 2 3 41 0

Fundamentals 12

2.5.4 Concatenate
The concatenate operation merges n tensors into a single output tensor, provided they have the same
shape except for the concatenation axis. Figure 11 illustrates an example of concatenation. In this
example, three input tensors are concatenated on the second axis: the first tensor has 3×6 elements, the
second has 3×7 elements, and the third has 3×2 elements. The resulting tensor has 3×15 elements.
Concatenation is possible because all three tensors have the same number of elements on the first axis.
[32]

2.5.5 Batch Normalization
Batch normalization is a technique used in neural networks to normalize selected feature-maps.
Commonly batch normalization is used because it increases the training speed and reduces the chances for
exploding gradients. It is inserted into the network as layer and uses the moving mean μ , the moving
variance σ , the offset factor β , the scaling factor γ and the constant ϵ as parameters. [21]

The moving mean μ is the mean over time. It is initialized with zero.

μ=μ⋅m+mean(batch)⋅(1−m) (8)

Where mean(batch) calculates the mean of the current input batch and the momentum m characterizes

the resistance of the moving variance to change. A typical value for m is 0.99 .

The moving variance σ is the variance over time. It is initialized with one.

σ=σ⋅m+var (batch)⋅(1−m) (9)

Where var (batch) calculates the variance of the current input batch. The momentum m is the same

value as used to calculate the moving mean.

Both, the moving mean and the moving variance are updated each time the layer is called during training.

The parameters β and γ are updated during the training using the gradient descent algorithm. The
offset factor β is initialized with 0, γ with 1. ϵ is used as small configurable constant and is
added for numerical stability. TensorFlow uses an ϵ of 0.001. [33, 34]

At inference time the batch normalization is calculated as shown in (10).

Figure 11: Concatenation illustration

Concatenate

Fundamentals 13

bn(batch)=γ⋅batch−μ

√σ+ϵ
+β (10)

Example

To demonstrate the batch normalization an example is given. Assume a vector (which represents a single
sample of a batch) with 30 random elements in the range [-1.5, 2.5]. The histogram in Figure 12 shows its
distribution.

A batch normalization is now applied to the vector using different parameters. At first with β=0 , γ=1
and ϵ=0 .

In Figure 13 it is visible that the values are now distributed somewhere around 0 instead of 0.5. In Figure
14 the use of the scaling parameter γ is demonstrated by setting it to γ=0.58 .

The values are now scaled into a much smaller range. To offset the features for an alignment in between
[-1,1], β=0.05 is used.

By using the user parameter ϵ=0.001 the numerical stability of the batch normalization is improved.
Since the variance is always positive, the value epsilon can be used to avoid a division by zero. The
output of the batch normalization when using γ=0.58 , β=0.05 and ϵ=0.001 is shown below (it
should not be distinguishable from Figure 15 by a human eye).

Figure 13: Batch normalization applied with β=0 and ɣ=1

Figure 14: Batch normalization applied with β=0 and ɣ=0.58

Figure 12: Histogram of a vector with floating-point elements

Figure 15: Batch normalization applied with β=0.05 and ɣ=0.58

Fundamentals 14

The Python script demonstrating batch normalization on a vector can be found in the appendix under
demos/batchnorm-demos.py.

Folding

The folding of a batch normalization layer L consists of the removing of the batch normalization layer
from the networks graph and in updating the models parameters to keep its predictive function
unchanged. It is performed to improve the networks performance at inference time. The folding is
executed after training the model.

Benoit Jacob et al. propose in their 2017 paper “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference” [35] an approach for folding a batch normalization layer
into a neighboring expressive layer in backwards direction (see figure 17). These can be convolutional or
dense layers. The batch normalization layer itself is completely removed. The approach can be denoted as
shown in equation (11).

W foldB=γ
W

σ+ϵ
(11)

Where W foldB are the weights with folded batch normalization parameters, W the tensor of original

weights, γ the scaling factor, σ the moving variance and ϵ for numerical stability.

With the BaN-OFF algorithm an improved folding was presented by Edouard Yvinec et al. in “To Fold or
Not to Fold: a Necessary and Sufficient Condition on Batch-Normalization Layers Folding” [36]. It
defines the weights folding for biases in backwards direction and adds definitions to fold weights and
biases in forward direction. It proposes the folding of batch normalization layers even when no direct
connection to an expressive layer exists.

The backwards folding of biases is done by:

b foldB=γ
b−μ
σ+ϵ

+β (12)

Where b foldB are the backwards folded biases, b the original biases, μ is the moving mean and β the offset.

The forward folding of weighs and biases is described in (13) and (14).

Figure 16: Batch normalization applied with β=0, ɣ=0.58 and ϵ=0.001

Figure 17: Directions in a sequential model

Input Output1

Layers

Forward direction

Backward direction

2 3 ... n

Fundamentals 15

W foldF=W foldB=γ
W

σ+ϵ
(13)

bfoldF=γ
μ

σ+ϵ
+β⋅W +b (14)

Note that the forward and backward folding of non-biased weights uses the same equation. To enable the
folding even when no direct connection to an expressive layer exists, the BaN-OFF algorithm gathers all
neighboring expressive layers in two sets: one for inputs and one for outputs of L, each starting with the
batch normalization layer L itself. If a neighboring non-expressive layer is found, all neighboring
expressive layers of this layer are added. This process is repeated until no new neighboring non-
expressive layers are found. The batch normalization layer L is foldable, if at least one set:

1. Of gathered layers is not limited to L

2. All the leaves of the set are expressive layers [36]

If the set of input layers satisfies the second requirement, the gathered layers on the input side of L are
updated using (11) and (12). The other ones negate the previous update using:

W=W
γ

(σ+ϵ) (15)

b=b+γ
W μ
σ+ϵ

−β⋅W (16)

If not, the gathered layers on the input side of L are updated using (13) and (14) while other ones negate
the previous update using:

W=W
γ

(σ+ϵ) (17)

b=b
γ
(σ+ϵ)+γ

μ
σ+ϵ

−β (18)

To fold batch normalization layers as described above, the Python package “tensorflow-batchnorm-
folding” can be used. It is developed by the main author of the paper [36]. Since it is limited to folding
dense and convolutional 2D layers, and requires the no longer supported TensorFlow version 2.9, it must
be updated to be usable with the EmmiTranslator, which only supports TensorFlow version 2.11 or higher.
[37]

2.6 Quantized Neural Networks

2.6.1 Introducing Quantized Neural Networks
Neural networks commonly use floating-point values to represent inputs, weights, biases, feature-maps,
and outputs. However, when deploying on integer-only hardware, these values can be handled by either
using soft-float on the destination device or by converting the model to a quantized integer model. In
addition to being beneficial for integer-only hardware, quantization can also improve the performance on
floating-point hardware by reducing storage requirements and increasing the execution speed of the
neural network.

Quantization is the process of converting continuous values into a discrete representation. It involves
converting arrays of floating-point numbers into arrays of integer values. In the context of neural

Fundamentals 16

networks, this process is applied to all inputs, weights, biases, and feature-maps. A size reduction of up to
four times can be archived when converting a 32-bit floating-point network to an 8-bit integer network.

Quantization techniques for neural networks can be categorized: post training quantization techniques or
techniques using quantization aware training, static or dynamic quantization and true or fake integer
quantizations.

True Integer Quantization

True integer quantized neural networks perform all operations using integer values, meaning that floating-
point values are not used. To prevent overflows, techniques such as rescale operations must be employed
since the multiplication of two integer values of bit-widths m and n results in an integer value of bit-width
m n⋅ . These rescale operations use a scaling factor to reduce the bit-width of the feature-maps. Figure 18
illustrates a dense layer that employs true integer quantization and rescaling. [38]

Fake Integer Quantization

Fake quantized neural networks use floating-point arithmetic for some or all of their operations. Fake
quantization involves storing weights as integers and converting them to floating-point values during
inference, which can significantly slow down the process. The primary purpose of fake quantization is to
reduce the storage requirements of neural networks. Figure 19 illustrates a dense layers inference using
fake quantization with linear activation. [38]

Dynamic Quantization

When utilizing dynamic quantization, only the quantization parameters for weights and biases are
established during model conversion. The quantization parameters for the feature-maps are established at
runtime. The rescaling process dynamically determines the scaling factor used to rescale the feature-
maps. [38]

Figure 18: Inference using true integer quantization

int8

int8

weights

activations

Matmul int8

Outputs

Add

int8bias

Rescale

int32int8 int8

Figure 19: Inference using fake quantization

int8

int8

weights

activations

(float)

(float)

QuantizationMatmul int8

Outputs

Add

int32 (float)bias

floatint8 int8

Fundamentals 17

Static Quantization

In statically quantized neural networks, all quantization parameters are fixed and already known after the
model has been converted. This applies to weights and feature-maps. They are determined by analyzing a
representative dataset during the conversion phase, which is crucial for determining the quantization
parameters for the network's feature-maps. This approach eliminates the need for dynamic rescaling, as a
static rescaling factor is applied after each layer, improving the performance of the rescaling process
applied during inferences. [38]

Post Training Quantization

Post training quantization is applied to a neural network after it has been trained. This converts its weights
and biases from floating-point to quantized lower precision representations. The process involves
quantizing the model parameters after training, which may result in a slight decrease in accuracy due to
the quantization errors not being accounted for during training. [38]

Quantization Aware Training

Quantization aware training involves applying quantization during the model's training process, rather
than only quantizing afterwards, as it is the case with post training quantization. During quantized aware
training, the quantization of the model is simulated, often by quantizing and dequantizing the model after
each epoch. This adds the quantization error to the models weights, which enables the model to fit its
weights to the used quantization. Quantization aware training is considered to be beneficial to the
accuracy of a quantized neural network. [39]

2.6.2 DYINQ
The Dynamic Inference Quantization is the post training quantization technique implemented in Emmi. It
quantizes a neural network when converting a TensorFlow model to Emmi using the EmmiTranslator.
DYINQ is a dynamic post training quantization, with support for true integer quantization. [7]

Quantizing Floats

DYINQ is designed to quantize vectors of floating-point values, using the same scale and zero offset.
Single elements of float are quantized by multiplying them with a scale and then adding a zero offset that
is used to align the quantized values in the range of a signed integer type.

qi=round (y i s+ z) (19)

Where yi is an element of the floating-point vector y and qi the resulting quantized value.

The scale s is calculated by dividing the quantization steps through the range of floating-point values.

s=round(Qsteps

max (y)−min(y)) (20)

The zero offset z is calculated from the smallest possible value within the quantized space, the minimum
value of the floating-point vector and the applied scale.

z=Qmin−min(Y) s (21)

The number of quantization steps Qsteps depends in the chosen bit-width b of the integer value:

Fundamentals 18

Qsteps=Qmax−Qmin=(2b−1−1)−(−2b−1)=2b−1 (22)

Matrix Multiplication

The matrix multiplication within the quantized space using DYINQ is very similar to a standard matrix
multiplication. It differs by subtracting the zero offsets and recalculating the scale in the second step.

q3
(i , j)=∑

k=1

N

(q1
(i , k)−z1)(q2

(k , j)−z2) (23)

Where q3
(ij) is an element in the resulting matrix at position i, j.

The output scale is calculated by multiplying the scales of the input matrices, the zero offset is set to zero.

s3=s1 s2 (24)

Elementwise Addition

When performing an elementwise addition, both input vectors Q1 and Q2 are brought to the same scale.
Afterwards the elementwise addition is performed.

Q1 '=(Q1−z1)⋅s2 (25)

Q2 '=(Q2−z2)⋅s1 (26)

Q3=Q1 '+Q2 ' (27)

The scale of Q3 is determined by (24), the resulting zero offset is zero.

Elementwise Multiplication

Elementwise multiplication is performed by removing the zero offsets and multiplying the elements. The
resulting zero offset is zero, the scale is determined by (24).

Q3=(Q1−z1)∘(Q2−z2) (28)

Where Q1 and Q2 are the factors and Q3 is the product.

Division

When performing an elementwise division (denoted as ./), several steps are required. At first both
input vectors are brought to the same scale.

Q1 '=(Q1−z1)⋅s2 (29)

Q2 '=(Q2−z2)⋅s1 (30)

Where Q1 is the dividend and Q2 the divisor.

In the next step the dividend is shifted until all bits of a register are used. This is done to prevent that all
elements in quotient are zero since an integer multiplication is used. Afterwards the division is performed
in (32) and the scale is updated in (33). The resulting zero offset is zero. On a system with p bits:

bshift=(p−1)−ceil (log2(max (|Q1 '|))) (31)

Q3=shift L(Q1 ' , bshift)./Q2 ' (32)

s3=2bshift (33)

Fundamentals 19

Where bshift is the number of bits to shift, Q3 the quotient and s3 the quotients scale.

Rescale

The rescale operation implemented in DYNQ is used within a neural network to dynamically rescale
feature-maps without providing a predetermined rescale factor. This factor is determined by the rescale
method itself.

To determine the rescale factor, at first the zero offset is corrected by calculating a new, optimal zero
offset z2 and correcting the values within the matrix to adjust for the new zero offset.

Qmin=min(Q1)−z1 (34)

Qmax=max (Q1)−z1 (35)

z2=
Qmin−Qmax

2
−Qmin (36)

zadj=z2−z1

Q1 '=Q1+ zadj

Where Q1 is the matrix to rescale, z1 the zero offset of the matrix, Qmax the maximum without zero

offset, and Qmin the minimum without zero offset. Q1 ' is the matrix to rescale with the new zero

offset.

After correcting the zero offset, the absolute maximum of the tensor is calculated and the number of shifts
required to match a given bit-width b is determined.

Qamax=max (|Q1 '|) (37)

bshift={ceil (log2(|Qamax+1|)−(b−1)) if log2(Qamax−1)≤b−1
0 else

(38)

In the last step the shift is performed on all elements of Q1 ' and its scale. The resulting matrix Q2 is

within the constraints of bit-width b.

Q2=shift R(Q1 ' , bshift) (39)

s2=shift R(s1 , bshift) (40)

2.6.3 Runtime Accuracy Improvements
To enhance the precision of quantized networks using DYINQ, the bit-width of the quantization can be
increased, as demonstrated in [7]. This concept of increasing the bit-width can be applied to the feature-
maps in between the networks layers. Rather than maintaining all feature-maps at the same bit-width as
the quantization bit-width, a higher bit-width is chosen. The internal, higher bit-width has no impact on
the size of the quantized network and can be adjusted after converting the network for the embedded AI
framework.

One of the benefits of DYINQ is its support to use different bit-widths within a single operation. If a
higher bit-width is used for the output feature-maps of a layer, the subsequent layer can process this
higher bit-width as its input, even if the weights of the subsequent layer are stored in a different, lower
bit-width.

Fundamentals 20

Details on the implementation of the feature-map bit-width can be found in section 4.4.3. A brief
overview of possible gains in accuracy is given in the next subsection.

Accuracy Gains when Increasing Feature-Map Bit-Widths

To analyze how the size of internal feature-maps affects accuracy, an example is implemented using
Python. The network used in this analysis has two dense layers, each with 32 neurons. The input vector
has 32 elements. All weights and the input vector are randomly generated for 100 samples. Weights and
biases are quantized with 8-bits.

Figure 20 shows that the average error decreases when increasing the bit-width of the internal feature-
maps. The largest decrease in error is between 8- and 9-bits with 24%. For 11-bit or higher, the rate of
error reduction slows down. The increase of the average error when using 13-bits is caused by the small
number of samples. Detailed error values are shown in Table 3.

Table 3: Average error when increasing internal feature-map bit-widths

Bit-width Average Error

8 41.17%

9 17.98%

10 9.03%

11 8.03%

12 7.63%

13 7.69%

14 7.5%

The Python script demonstrating the internal bit-width can be found in the appendix under
src/EmmiTranslator/demos/demo_internal_qbits.py.

Figure 20: Average error when increasing internal feature-map
bit-widths

Fundamentals 21

2.6.4 Quantization against Soft-float
Quantization has many disadvantages, such as loss of accuracy, especially after running a rescale
operation, which is required after each multiplication to avoid overflow. But why quantize at all, if
floating-point support can be emulated with soft-float? The reason is the low performance of soft-float
compared to integer-only quantization, as shown in Figure 21.

It compares the performance of a quantized convolutional neural network to a floating-point
convolutional network. Both networks are executed on the same hardware, using the same input data and
are both storing their data in 32-bit variables. The quantized network uses int32_t and the floating-point
network 32-bit float, which is emulated in software. It is visible that the quantized neural network
outperforms the floating-point network by factor 3.24. This is caused by the high overhead required by
soft-float implementations.

The example comparing the performance can be found in the appendix under demos/emmi-LeNet5-demo.

2.6.5 Fix-Point Quantization
An alternative to integer quantization is the fix-point quantization. During fix-point quantization a shared
exponent is used between all values. This shared exponent is chosen based on the value distribution of a
neural network. Figure 22 illustrates an 8-bit floating-point number, consisting of a sign-bit, a 4-bit
exponent and a 3-bit mantissa, as well as an 8-bit fixed-point number, utilizing a shared exponent. [40]

Currently fix-point quantization is neither supported by TensorFlow or PyTorch. For its support additional
software, such as QPyTorch is required. Since this thesis deals with the embedded AI Framework Emmi,
which focuses on integer quantization, fix-point quantization is not further investigated. [41, 42, 43]

Figure 21: LeNet-5 in Emmi using DYINQ and soft-float

Figure 22: Representation of floating-point and fixed-
point numbers

1 1 0 1 0 0 0 1

1 0 0 00 0 1 0

1 0 1 0

fixed-point

floating-point

shared exponent

sign-bit exponent mantissa

Analysis and Design 22

3 Analysis and Design
This section defines the requirements for all software written within the scope of this thesis, analyzes
architecture of the embedded AI Framework Emmi and presents the design decisions made to improve the
framework.

3.1 Software Requirements
All software developed for the Emmi framework should meet the existing standards within the Emmi
Framework, which can be divided into five categories:

TensorFlow Keras Compatibility

• All supported layers are compatible to their TensorFlow Keras equivalents

• Models with unsupported layers are rejected by the EmmiTranslator

Maintainability

• Software is divided into small modules that can be used by multiple components

• Code is clean, efficient and as simple as possible

Documentation

• C code is documented using doxygen compatible function descriptions [44]

• Python code is documented according to PEP 257 [45]

Testability

• Layers in the Emmi Core are testable using unit tests

• EmmiTranslator is testable in integration tests in combination with the EmmiCore and vmath

Embedded RISC-V

• The Emmi Core and its dependencies are executable on RISC-V based embedded systems

• Keep code size in mind: datatypes are as small as possible

• Layers Emmi Core are vectorizable for the RISC-V Zve32x extension using GCC’s automatic
vectorizer, details on GCC’s automatic code vectorization are described in [46]

Analysis and Design 23

3.2 Analysis of Existing Components
As already described in section 2.4.1 Emmi is separated into three different modules. This subsection
provides an overview of all components and their parts. A more detailed description of all components
and parts can be found in [7].

3.2.1 EmmiTranslator
The EmmiTranslator is separated into several namespaces consisting of different Python modules. The
root namespace contains the model_decoder, which decodes Keras models into an internal model
representation, which is then used by the translator module to generate Emmi compatible models. The
misc module contains small tools, for example for printing debug information. The header_generator and
the code_generator are both responsible for generating C code.

The namespace layer_representation contains the modules responsible for the internal representation of
the original Keras model. Tools contains additional functionalities to analyze neural networks. A Python
implementation of the quantization technique DYINQ can be found in the namespace quantization, which
also contains a module implementing the integer-only quantization by Benoit Jacob (abbreviated as JAQ)
as well as a module containing buffers which can be used to store quantized tensors.

Unit tests for the modules DYINQ and JAQ can be found in the namespace tests. Unit tests for other
modules of the EmmiTranslator are not implemented.

Figure 23: Modules and namespaces of EmmiTranslator

layer_representation

<tools>

layerOutputViewer

WeightsHistogra.

LayerBuffer

LayerIO

LayerConnect

<quantization>

<noquantization>

DYINQ

JAQ

buffers

actf

<tests>

DYINQ

JAQ

<EmmiTranslator>

code_generator

header_generator

misc

translator

model_decoder

Analysis and Design 24

3.2.2 Emmi Core
The Emmi Core is separated into seven C modules. At first there are three modules dealing with the
implemented activation functions. The module actf_flt implements activation functions for the type float,
wheres the module actf_q32 implements activation functions for 32-bit quantized types. Actf_factors
stores the thresholds for hard activation functions.

Layers, such as the dense layer or the convolution are implemented in layers_flt and layers_q32. Small
functionalities that are shared across different layers, for example the calculation of dilated tensors, are
implemented in the tools module. Analysis contains static functions such as the mean square error.

3.2.3 Vmath
Vmath is a library for vector and matrix operations, supporting floating-point, integer, and quantized
types. Besides vector and matrix operations, it implements approximations for the exponential function
and functionalities for comparing and printing tensors. Since vmath is beyond the scope of this thesis, it
will not be examined further.

Figure 24: Modules of Emmi Core

<EmmiCore>

actf_factors

actf_flt

actf_q32

analysislayers_flt

layers_q32 tools

Figure 25: Modules of vmath

<vmath>

vmath_compare

vmath_functions

vmath_print

vmath_tools_fltvmath_ops_flt

vmath_ops_i32 vmath_tools_i08

vmath_ops_q08 vmath_tools_i16

vmath_tools_i32vmath_ops_q16

vmath_ops_q32

vmath_ops_sxx

vmath

Analysis and Design 25

3.2.4 Opportunities for Improvements

Usage of lower bit data types

Quantized neural networks are consistently stored in 32-bit types, even when a lower bit-width is
sufficient, such as with 8-bit quantization. To support native 8- and 16-bit types for quantized neural
networks, it is necessary to add support for the already by vmath supported types Tensor_q16 and
Tensor_q8 in Emmi. Additionally, the EmmiTranslator must be updated to select the most appropriate
data type, which will reduce the size of quantized networks.

Accuracy Improvements

The feature-maps in quantized networks currently use the same bit-width as the weights, which is not
always necessary since DYINQ supports operands with varying bit-widths. By increasing the bit-width of
the feature-maps, accuracy can be improved without increasing the model size, which was shown in
section 2.6.3.

3.3 Design Decisions
During the design phase, general design decisions for the batch normalization are made. It is also decided
how the framework is restructured, which parameters the new build system should support and where
function prototypes for the new features are placed and integrated into the framework.

3.3.1 Batch Normalization
Since a true quantized implementation of batch normalization at inference time would require a square
root function within the quantized space, which has not yet been developed, a true quantized
implementation of the batch normalization will not be realized within Emmi. Instead the batch
normalization folding will be implemented by improving and using the package “tf-batchnorm-fold”.

3.3.2 Project Structure
Currently, both Emmi and vmath store all their files in a single project directory without a clear separation
of source, header, and documentation files. This lack of organization hinders the delivery of pre-built
binaries and headers to customers. Implementing a structured approach to file management, such as
separating source, header, and documentation files, will streamline the project structure and facilitate
easier distribution of necessary components to customers.

Approach

The project structure of Emmi and vmath are restructured to separate source code, headers,
documentation, and build scripts. All source code is moved to the “src” directory, all public header files to
the “include” directory and all documentation to the “doc” directory. The build scripts are kept alongside
the readme in the repositories root directory.

Analysis and Design 26

Table 4: New Emmi root project structure

Directory / Filename Description

build/ Contains object files and executable. Directory is automatically
generated when executing the makefile.

doc/ Emmi documentation in markdown.

include/ Public header files.

src/ C source code files.

Makefile Build rules and profiles

README.md Repository description

Table 5: New vmath project structure

Directory / Filename Description

Build/ Contains object files and executable. Directory is automatically
generated when executing the makefile.

include/ Public header files.

src/ C source code files.

Makefile Build rules and profiles

README.md Repository description

Unit Tests for both repositories are still maintained in separate repositories. These so called testbenches
contain besides the unit tests also integration tests and benchmarks for accuracy and performance. How
the testbenches include the repositores of vmath and Emmi is shown in Figure 26. The source code of the
unit and integration tests are stored in the subdirectories “e5aisuite-testbench/tests” for the Emmi
testbench and “vmath-tests/tests” for the vmath testbench. Note that the testbench of Emmi still uses the
old name “e5AISuite” for compatibility reasons.

3.3.3 Build System
The Emmi Core, vmath and the testbenches each require individual makefiles for building for RISC-V
and AMD64 platforms. These makefiles both employ their own build profiles, parameters and do not
offer support for different GCC prefixes. A redesign of the build system to use a single makefile per

Figure 26: Repository structure of the testbenches

vmath-testbench

vmath Emmie5testemmi-testbench

vmathe5test

Repository Submodule

Analysis and Design 27

component for multiple platforms will reduce maintenance effort and simplify the build process. Support
for different GCC prefixes and preconfigured targets is also added.

Parameters

To set the destination platform, the target parameter is introduced. Options are:

Table 6: Supported target platforms

Option Description

target=amd64 Compile for AMD64

target=emsa5 Compile for RISC-V, link the EMSA5 HAL, use
the EMSA5 memory map and startup script

target=spike Compile for RISC-V, use spike memory map and
startup script

To set the compiler optimizations and to control weather debug information should be included in the
binary file, the profile parameter is introduced.

Table 7: Supported compilation profiles

Option Description

profile=default -O2, enable debug information

profile=debug -O0, enable debug information

profile=vector -O2, enable automatic vectorization (RISC-V only)

profile=release -O2

Analysis and Design 28

3.3.4 EmmiTranslator
Within the EmmiTranslator the planned changes and improvements focus on the Python modules
model_decoder and translator. Within the model_decoder, the in Figure 27 red marked functions and
variables will be added during the implementation.

The planned changes for the translator focus on the process when translating the model. The changes are
described in section 4.3.3.

Figure 27: EmmiTranslator module model_decoder

model_decoder

+decode_shapes()
+decode_layer_io_name()
+decode_actf()
+decode_padding_type()
+extract_layer_Input()
+extract_layer_Dense()
+extract_layer_Activation()
+extract_layer_Conv1D()
+extract_layer_DepthwiseConv1D()
+extract_layer_Conv2D()
+extract_layer_DephwiseConv2D()
+extract_layer_MaxPooling1D()
+extract_layer_MaxPooling2D()
+extract_layer_AvgPooling1D()
+extract_layer_AvgPooling2D()
+extract_layer_GlobalMaxPooling1D()
+extract_layer_GlobalMaxPooling2D()
+extract_layer_GlobalAveragePooling1D()
+extract_layer_GlobalAveragePooling2D()
+extract_layer_BatchNormalization()
+extract_layer_Concatenate()
+extract_layer_Dropout()
+extract_layer_Flatten()
+extract_layer_Add()
+add_empty_input_layer()
+decode_model()

default_actf_map:dict
exp_actf_map:dict
fexp_actf_map:dict
nsh_actf_map:dict

Analysis and Design 29

3.3.5 Emmi Core
Most of the changes to the Emmi Framework are made within the Emmi Core. Here, support for new
quantization types is added, as well as support for new layers. Figure 28 shows modified modules in
green. Newly implemented modules are shown in red.

For the layers_flt and layers_q32 modules and an overview of all implemented functions is presented in
Figure 29. The modules layers_q08 and layers_q16 implement the same functionality as layers_q32, but
with native 8- and 16-bit types.

Figure 28: New Emmi Core modules

<EmmiCore>

actf_factors

actf_flt

actf_q32

analysislayers_flt

layers_q08

layers_q16

layers_q32

tools

Figure 29: Emmi Core modules layers_flt and layers_q32

layers_flt

+dense_flt()
+add_flt()
+conv1d_flt()
+depthwiseconv1d_flt()
+maxpool1d_flt()
+avgpool1d_flt()
+globalaveragepool1d_flt()
+globalmaxpool1d_flt()
+conv2d_flt()
+depthwiseconv2d_flt()
+maxpool2d_flt()
+avgpool2d_flt()
+globalaveragepool2d_flt()
+globalmaxpool2d_flt()
+dropout_flt()
+flatten_flt()
+concatenate_flt()
+batchnormalization_flt()

layers_q32

+dense_q32()
+add_q32()
+conv1d_q32()
+depthwiseconv1d_q32()
+maxpool1d_q32()
+avgpool1d_q32()
+globalaveragepool1d_q32()
+globalmaxpool1d_q32()
+conv2d_q32()
+depthwiseconv2d_q32()
+maxpool2d_q32()
+avgpool2d_q32()
+globalaveragepool2d_q32()
+globalmaxpool2d_q32()
+dropout_q32()
+flatten_q32()
+concatenate_q32()
+batchnormalization_q32()

Implementation 30

4 Implementation

4.1 Convolutional Operations

4.1.1 One-Dimensional Convolution
The one-dimensional convolution is the first operation implemented during the course of this thesis. The
implementation supports parameters such as stride, dilation and padding, wheres the implemented zero
padding does not add zeros at the borders of the feature-map. Instead the indexing is modified in a way
that no expensive resize of the feature-map is required.

The one-dimensional convolution is implemented for floating-point and for quantized neural networks.
An overview of all major steps performed in the implementation is given below. Steps within [square
brackets] are only performed when performing a quantized operation. Implementation details of each step
may differ between the quantized and the floating-point implementation.

1. Check input shape

2. [Calculate output quantization parameters]

3. Calculate dilated kernel shape

4. Calculate output dimensions, start- and stop offset for indexing the input feature-map

5. Write bias into output tensor

6. Iterate over kernels, input channels and elements per channel

6.1. Check padding, calculate kernel indexing offsets

6.2. Iterate over current kernel

6.2.1. Apply current kernel element to current input feature

6.3. Write result for current input feature to output tensor

7. [Rescale operation]

8. Apply activation function

4.1.2 Depth-wise Convolution
The depth-wise convolution is implemented for one- and two-dimensional inputs with multiple channels.
Both implementations support parameters stride, dilation and padding. The major difference in the
implementation to the standard convolution is in the sixth step: Instead of iterating over input kernels
(line 302 in Listing 1), input channels (line 303) and elements per channel (line 304), it is iterated over
input channels (line 380), the channel specific kernels (line 381) and the elements per channel (line 384).

Implementation 31

Listing 1: Compare implementation of depth-wise and standard convolution

Standard Convolution

302
303
304
305

306

for(int32_t q = 0; q < kernel->q; q++) {
for (int32_t p = 0; p < in->p; p++) {

size_t out_index = q*out->elements_mn;
for (int32_t n = -start_offset_n; n < (int32_t)

 (in->n - stop_offset_n); n+=stride) {
float kernel_out = 0;

 ...

Depth-wise Convolution

380
381
382
383

384

for (int32_t p = 0; p < in->p; p++) {
for(int32_t q = 0; q < kernel->q; q++) {

size_t out_index = (p*kernel->q + q) * out->elements_mn;
for (int32_t n = -start_offset_n; n < (int32_t)

 (in->n - stop_offset_n); n+=stride) {
float kernel_out = 0;

 ...

Excerpts from file "emmi/src/layers_q32.c"

4.1.3 Floating-Point and Quantized Implementation
Discrepancies between the floating-point and quantized implementations of convolutional operations are,
as a result of a portable implementation, confined to the following steps (excerpt from section 4.1.1):

 2 [Calculate output quantization parameters]

 5. Write bias into output tensor

 6.2.1. Apply current kernel element to current input feature

 6.3 Write result of current input feature to output tensor

 7 [Rescale operation]

Calculate output quantization parameters

In the quantized implementation, the second step calculates the output quantization parameters. The zero
offset is set to zero, since it is subtracted. The scale is calculated from the input scale, the scale of the
kernel and the scale of the bias. An excerpt is shown in Listing 2.

Listing 2: Calculate quantization parameters in a 1D convolution

281
282

out->zero_offset = 0;
out->scale = in->scale * kernel->scale * bias->scale;

Excerpts from file "emmi/src/layers_q32.c"

Write bias into output tensor

When writing the bias into the output tensor of the convolutional operation, the quantized and the
floating-point implementation differ slightly. In the quantized implementation the zero offset of the bias
must be removed from the values, which are afterwards brought to the output scale of the convolution, as
shown in Listing 3.

Implementation 32

Listing 3: Writing the bias into the ouput tensor of a 1D convolution

Floating-Point Implementation "emmi/src/layers_flt.c"

606
607
608
609
610

for (size_t p = 0; p < out->p; p++) {
for (size_t i = 0; i < out->elements_mn; i++) {

out->data[p*out->elements_mn + i] = bias->data[p];
}

}

Quantized Implementation "emmi/src/layers_q32.c"

295
296
297

298
299

for (size_t p = 0; p < out->p; p++) {
for (size_t i = 0; i < out->elements_mn; i++) {

out->data[p*out->elements_mn + i] =
 (bias->data[p] - bias->zero_offset) * in->scale * kernel->scale;

}
}

Apply current kernel element to current input feature

The implementation of the 1D convolution is using the outer loops to iterate through the input tensor and
the inner loop, to iterate over the kernel (which is shown in Listing 4). When performing the
multiplication of a kernel element and an input element, the quantized implementation requires the
removal of the zero offset before multiplying, similar as described in section 2.6.2.

Listing 4: Inner loop of a 1D convolution

Floating-Point Implementation "emmi/src/layers_flt.c"

617
...
629
630
631
632
633
634
635
636
637

float kernel_out = 0;
...
for (int32_t kn = kn_start; kn < kn_stop; kn++) {

int32_t ind = tensor_representative_index(kernel, 0, kn, p, q);
float a = kernel->data[ind];
int32_t i_idx_n = n + kn * dilation;
int32_t b_ind = tensor_representative_index(in, 0, i_idx_n, p, 0);
float b = in->data[b_ind];
kernel_out += a * b;

}
out->data[out_index] += kernel_out;

Quantized Implementation "emmi/src/layers_q32.c"

306
...
318
319
320
321
322
323
324
325
326

int32_t kernel_out = 0;
...
for (int32_t kn = kn_start; kn < kn_stop; kn++) {

int32_t ind = TENSOR_REPRESENTATIVE_INDEX_MACRO(kernel, 0, kn, p, q);
float a = kernel->data[ind];
int32_t i_idx_n = n + kn * dilation;
int32_t b_ind = TENSOR_REPRESENTATIVE_INDEX_MACRO(in, 0, i_idx_n, p, 0);
float b = in->data[b_ind];
kernel_out += (a - kernel->zero_offset) * (b - in->zero_offset);

}
out->data[out_index] += kernel_out * bias->scale;

Write result of current input feature to output tensor

After iterating though all kernel elements within the inner loop, the result is written on-top of the bias,
which is already stored in the output tensor. Since an addition is performed, both parameters must use the
same scale. For this, the kernel output is multiplied with the scale of the bias when using the quantized
implementation, as shown in Listing 5.

Implementation 33

Listing 5: Write result to output tensor in a 1D convolution

Floating-Point Implementation "emmi/src/layers_flt.c"

637 out->data[out_index] += kernel_out;

Quantized Implementation "emmi/src/layers_q32.c"

326 out->data[out_index] += kernel_out * bias->scale;

Rescale operation

The rescale operation is only applied in the quantized implementation. It takes the tensor containing the
output of the convolution and the bit-width to rescale to and rescales all elements in-place when passing
the result tensor as input and output parameter.

Listing 6: Calling the rescale operation

331 tensor_rescale_q32_q32(out, out, nbits);

Excerpts from file "emmi/src/layers_q32.c"

4.2 One-Dimensional Pooling Operations

4.2.1 Max Pooling
The implementation of max pooling 1D supports parameters such as stride, dilation and padding. Instead
of iterating through the elements of the kernel, the iteration is performed on all elements of the pooling
scope, with the aim of determining the maximum value of the current scope. Each step of the
implementation is outlined below:

1. Check input shape

2. [copy quantization parameters to output tensor]

3. Calculate dilated kernel shape

4. Calculate output dimensions and start- and stop offset for indexing the input feature-map

5. Iterate over input

5.1. Check padding, calculate pooling indexing offsets

5.1.1. Iterate though pooling scope

1. Find maximum value

5.2. Write maximum value into output tensor

4.2.2 Average Pooling
Average pooling 1D supports, as max pooling 1D, the parameters stride, dilation and padding. It is
iterated though the elements within the pooling score to determine its average. Each step performed
within the implementation is outlined below:

1. Check input shape

2. [copy quantization parameters to output tensor]

3. Calculate dilated kernel shape

Implementation 34

4. Calculate output dimensions and start- and stop offset for indexing the input feature-map

5. Iterate over input

5.2. Check padding, calculate pooling indexing offsets

5.3. Iterate through pooling scope

5.3.3. Accumulate values within pooling scope

5.4. Calculate average

5.5. Write average into output tensor

4.2.3 Global Max Pooling
Global max pooling iterates though all elements in each channel and determines the maxima per channel.
It does not support any parameters, an overview of the implemented steps is presented below:

1. Check input shape

2. [copy quantization parameters to output tensor]

3. Iterate through channels

3.1. Iterate through all elements within a channel

3.1.1. Find maximum value

3.2. Write maximum value into output tensor

4.2.4 Global Average Pooling
The implementation of global average pooling only differs in a few steps from the implementation of
global max pooling. As global max pooling, global average pooling does not support any parameters.

1. Check input shape

2. [copy quantization parameters to output tensor]

3. Iterate through channels

3.2. Accumulate through all elements within a channel

3.3. Calculate average of a channel

3.4. Write average value into output tensor

4.2.5 Floating-Point and Quantized Implementation
The floating-point and quantized implementations for the pooling operations do not differ much. In
quantized pooling no weights are involved, meaning only a single scale is used within the whole
operation. This enables the quantized values to be handled in the same way as float values. No additional
rescale operations are required.

Implementation 35

4.3 Batch Normalization
For the batch normalization several implementations are provided. At first a layer using floating-point
values is implemented in Emmi using C code. Afterwards this implementation is reused in an
implementation for fake quantization. Meaning a layer that takes quantized values, performs the batch
normalization as floating-point, and quantizes the result.

In the next step the support for folding the batch normalization parameters is added to Emmi. For this the
Python package “tensorflow-batchnorm-folding” is analyzed and improved. Afterwards the package is
added as dependency of the EmmiTranslator, which is modified to use the package to fold batch
normalization layers into the current network.

4.3.1 Floating-Point Implementation
Batch normalization is implemented for all axes supported by emmi. The axis used is passed by the caller
to the batch normalization function, which uses a switch case statement to perform the batch
normalization on the selected axis.

An excerpt of the batch normalization function is shown in Listing 7. It shows how batch normalization is
performed on axis m: It is iterated through all elements of the input tensor and performed using equation
(10).

Listing 7: Batch normalization on axis m

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080

1081
1082
1083
1084

for (int q = 0; q < in->q; q++) {
 for (int p = 0; p < in->p; p++) {
 for (size_t m = 0; m < in->m; m++) {
 for (size_t n = 0; n < in->n; n++) {
 // Input and output have the same index.
 size_t i_in = tensor_representative_index(in, m, n, p, q);

 // Determine index for BN parameters, all BN parameters have the same
 // shape -> only a single index for all BN parameters is required.
 size_t i_bn_params = tensor_representative_index(moving_mean,m,0,0,0);

 // Calculate BN for a single element.
 out->data[i_in] = gamma->data[i_bn_params] * ((in->data[i_in] -
 moving_mean->data[i_bn_params])
 / sqrt(moving_variance->data[i_bn_params] + epsilon)) +
 beta->data[i_bn_params];
 }
 }
 }
}

Excerpt from file "emmi/src/layers_flt.c"

Implementation 36

4.3.2 Fake Quantized Implementation
The implemented batch normalization for quantized neural networks is called with a quantized input
tensor and floating-point batch normalization parameters. The input tensor is dequantized and passed to
the floating-point implementation. Afterwards the output is quantized. The implementation is shown in
Listing 8.

Listing 8: Fake quantized implementation of batch normalization

880

881
882
883
884
885
886
887

888
889
890

int32_t batchnormalization_q32(
 Tensor_q32 *in, Tensor_q32 *out, const Tensor_flt *moving_mean,
 const Tensor_flt *moving_variance, const Tensor_flt *beta,
 const Tensor_flt *gamma, const float epsilon, const enum Axis axis,
 const uint8_t nbits) {
 float f_data[in->elements_mnpq];
 Tensor_flt f;
 f.type = FLOAT;
 f.data = f_data;
 f.elements_max = in->elements_mnpq;
 int32_t ret = tensor_dequant_q32(in, &f);
 ret |= batchnormalization_flt(
 &f, &f, moving_mean, moving_variance, beta, gamma, epsilon, axis);
 ret |= tensor_quantization_q32(&f, false, 0, false, 0, nbits, out);
 return ret;
}

Excerpts from file "emmi/src/layers_q32.c"

The implemented approach has many drawbacks, particularly when running on integer-only devices. The
use of soft-float to dequantize to floats on such devices results in a reduction of performance.
Furthermore, the performance is negatively affected by first dequantizing and then quantizing the feature-
maps.

A quantized implementation of the batch normalization is not employed, as the floating-point and the fake
quantized implementation of batch normalization within Emmi only serve as a fallback in the event that
folding during the model conversion is not possible.

4.3.3 Folding
To add support for batch normalization folding the Python Package “tensorflow-batchnorm-folding” is
used. Its feature set and code base is analyzed, improved and integrated into the EmmiTranslator in the
form of a Python dependency.

Analyzing the Python Package

At first the feature set and compatibility of the package are analyzed. It requires the no longer supported
TensorFlow version 2.9 and does not provide support for newer versions. As result the EmmiTranslator is
not compatible, since it requires TensorFlow 2.11 or newer. On the featureside the folding of batch
normalization layers into dense and convolutional 2D is supported, but limited to functional models.
TensorFlows sequential model architecture is not supported.

At last, the package structure is analyzed: Directory src/batch_normalization_folding contains two
subdirectories, one containing the implementation, consisting of the decoding of the input TensorFlow
model, the batch normalization folding and the rebuilding of the TensorFlow model. The other one
containing the required functionalities for writing unit tests for comparing models with folded batch
normalization layers with the original ones. The unit tests itself are implemented in a file called folder.py
located in the src/batch_normalization_folding directory of the package. They test the folding of batch

Implementation 37

normalization layers on several applications distributed with TensorFlow. The process of testing a model
is illustrated in an activity diagram shown in Figure 30.

Adding Compatibility to TensorFlow 3.11

A single change is required to add compatibility with TensorFlow 3.11. The network decoding
functionality is updated to use the layer.get_input_shape_at() function instead of the deprecated
layer.input.shape property.

Add Support for Sequential Models

To support sequential models, the decoding of the original TensorFlow model is updated. As sequential
TensorFlow models do not have a dedicated input layer, the search for input layers within the graph fails.
To fix this, the model type is checked. If a sequential model is found, the first layer is marked as an input
layer, allowing the model decoder to continue.

Add Support for 1D Convolutions

To add support for 1D convolutions, several files are modified. The file
src/batch_normalization_folding/TensorFlow/calculus.py contains all implementations required for the
folding of batch normalization layers into dense and 2D convolution layers. Added are the functions
fold_root_backward_conv1D() and fold_root_forward_conv1D(), which perform the batch normalization
folding as described by equations (11) and (13) for one dimensional convolutional layers.

Figure 30: Process of testing a folded model

Load TensorFlow
model

Fold BN layers

Run 100
inferences

Run 100
inferences

Generate random
inputs

Compare model
outputs

Implementation 38

Also modified is the file src/batch_normalization_folding/TensorFlow/add_biases.py. Its functions are
used when rebuilding the network graph. Implemented is the function add_conv1D_bias(), which
generates a new one dimensional, convolutional layer with the given parameters.

The file src/batch_normalization_folding/TensorFlow/to_fold_or_not_to_fold.py implements the
functionality to decide weather a layer is folded or not. Here the one dimensional convolution is added to
the list of supported operations.

Miscellaneous Improvements

Besides the improvements required for a compatibility to the EmmiTranslator, four minor improvements
are implemented into the Python package tensorflow-batchnorm-folding. In a first step, batch
normalization layers that have not been folded are counted and presented to the end user when enabling
the verbosity of the package. Subsequently, the evaluation of the unit tests is improved. Now, instead of
displaying a tick for each executed unit test, a pass or fail symbol is displayed depending on the actual
result of the unit test. Also, an additional folding algorithm is implemented besides BaN-OFF. The folding
algorithm, titled ‘simple’ only folds the batch normalization if it is foldable into a directly neighboring
layer. At last, the projects metadata is updated as described in PEP 621. [47]

Fork and Merge Request

All changes made to the Python package tensorflow-batchnorm-folding are committed to a fork of the
main project. Out of this fork, a merge request to the main project is created. It includes all changes and
improvements and was integrated by the projects maintainer into version 1.0.9 of the package. [48]

Integration into EmmiTranslator

In the EmmiTranslator Python package, tensorflow-batchnorm-folding is added as dependency as shown
in Listing 9.

Listing 9: Dependencies of Python package EmmiTranslator

19
20
21
22
23
24
25
26

dependencies = [
 'numpy >= 1.24',
 'Pillow >= 9.4',
 'matplotlib >= 3.6.3',
 'tensorflow >= 2.11',
 'tensorflow-batchnorm-folding >= 1.0.9',
 'pyserial >= 3.5',
]

Excerpt of "EmmiTranslator/pyproject.toml"

Within the translate_model() function, which is called by callers who want to translate a TensorFlow
model for the embedded AI framework Emmi, the batch normalization folding is performed before
decoding and converting the TensorFlow model for Emmi. An overview of the complete process when
calling translate_model() is given in Figure 31.

The function translate_model() starts by checking if the output path exists and raises an exception if it
does not. In the second step, the ctype, which is a string telling the converter the datatype to use when
storing the weights of the model, is decoded. The global verbosity of the translator is configured and the
desired model name is made compatible with the C code naming guidelines. It is checked if a TensorFlow
model is passed, and if batch normalization folding should be enabled. The following check for the batch-
normaization-package is good practice and hints users that are using the EmmiTranslator without a proper

Implementation 39

installation by their package manager to install tensorflow-batchnorm-folding, how this is done in Python
is shown in Listing 10. Afterwards the model is folded, decoded and converted to Emmi.

Figure 31: Activity diagram of function translate_model()

Raise OS error

Path
exists?

yes

no

Decode ctype

Raise value errorno

yes

Set global
verbosity level

Make model name
C conform

TensorFlow
model passed?

yes

BN folding
enabled?

yes

Check for BN
package

Folding failed?

yes

Fold model

Decode model
Build

Emmi model

no
Raise value error

Raise value error

no

Ctype
ok?

no

Implementation 40

Listing 10: Check for tensorflow-batch-normalization package

120
121
122
123
124

125
126
127

128
129
130
131

if (batchnorm_fold==True):
 try:
 # Ensure to install batch_normalization_folding from
 # https://gitlab.com/paspf/batch-normalization-folding
 from batch_normalization_folding.folder import
 fold_batchnormalization_layers
 except ModuleNotFoundError:
 print_line(0)
 print("Install batch_normalization_folding by using pip install
 batch-normalization-folding"
 "For the documentation of this package, visit:"
 "https://gitlab.com/edouardyvinec/batch-normalization-folding")
 print_line(0)
 exit(1)

Excerpt of "EmmiTranslator/EmmiTranslator/translator.py"

4.4 General Improvements
Besides the addition of new features and functionality, general improvements to the projects build system,
support for additional datatypes and a callback functionality are added to the embedded AI framework.

4.4.1 Build System
The makefiles of Emmi, vmath and the testbenches are completely rewritten to fulfill the functionality
described in 3.3.3. At first support for building for specific targets is added. Later on, build profiles and
the support for custom gcc prefixes is added.

4.4.2 Native 8- and 16-bit type support
Since its initial development, Emmi has only supported the structures Tensor_flt (for floating-point
tensors) and Tensor_q32 (for quantized tensors, where int32_t is used to store their elements), which
means that when 8-bit quantization is used, each weight and bias is stored in a 32-bit type, leaving 24-bits
unused. To correct this, support for processing quantized data from Tensor_q8 and Tensor_q16 is
implemented in Emmi by adding the functionality which is already present for Tensor_q32 also for the
types Tensor_q8 and Tensor_q16. As described in 3.3.5 the implementations of all layer functionality for
Tensor_q8 and Tensor_q16 are stored within the Emmi Core directories src/layers_q08.c and
src/layers_q16.c.

To generate models for Tensor_q8 and Tensor_q16, the EmmiTranslator is modified. The desired type is
selected using the "ctype" parameter, which is passed to the EmmiTranslator when the model is
converted. By default, the parameter "ctype" is set to "auto". This means, that the type used is selected
automatically based on the converter and quantization settings.

4.4.3 Feature-Map Bit-width
A method to improve the accuracy of the network is to increase the bit-width of the feature-maps, as
shown in section 2.6.3. To implement this feature, the EmmiTranslator and the Emmi C code are
modified.

The C code is modified so that each quantized layer and activation function requires an additional
parameter: the bit-width of the output feature-map. Instead of rescaling the output feature-map to the bit-

Implementation 41

width of the layer weights, it is rescaled to the bit-width passed as a parameter. Since the EmmiTranslator
generates the calls to the layers and activation functions, it is modified to insert the configured bit-width
as a new parameter. Since the DYINQ quantization technique can handle inputs and outputs with different
bit widths, no additional modifications in the program logic are required.

4.4.4 Shared Bias Quantization
Another feature added to Emmi and the EmmiTranslator is the shared bias quantization. When enabled
during model translation, the same quantization is selected for a layer's weights and biases. This means
that the scale and zero offset of a layer's weights and biases are the same. At inference time, this results in
a small performance improvement, as only two multiplications are required to bring a layer's input
feature-maps, weights and biases to the same scale, rather than three.

4.4.5 Activation Function Selection
Within Emmi some activation functions, such as the sigmoid function, are implemented several times.
One time using the exponential function from the c standard library, one time using an approximation of
the exponential function, and one time using a hard, step-wise defined function. Currently the
EmmiTranslator always inserts the default implementation of the activation function when translating the
model. When another implementation shall be used, the generated C code must be edited. The new
implementation introduces customizable maps of activation functions. They are passed to the
EmmiTranslator and map activation functions to the actual Emmi implementation. Table 8 shows all
preconfigured mappings.

Table 8: Preconfigured activation function mappings

Function Map Name

default_actf_map exp_actf_map fexp_actf_map nsh_actf_map

Description Default function
map applied by the
EmmiTranslator.

Utilizes c standard
library exponential

function

Utilizes an
approximated
exponential

function

Utilizes step-wise
defined sigmoid

function.

linear linear linear linear linear

Relu relu relu relu relu

sigmoid sigmoid_fexp32 sigmoid_exp sigmoid_fexp32 nsh_sigmoid

hard_sigmoid hard_sigmoid_tf hard_sigmoid_tf hard_sigmoid_tf hard_sigmoid_tf

softmax softmax_fexp32 softmax_exp softmax_fexp32 softmax_fexp32

tanh tanh_fexp32 tanh_exp tanh_fexp32 tanh_fexp32

swish swish_fexp32 swish_exp swish_fexp32 swish_fexp32

elu elu_fexp32 elu_exp elu_fexp32 elu_fexp32

selu selu_fexp32 selu_exp selu_fexp32 selu_fexp32

For more details on the implemented functions, see [56]. To customize a preconfigured mapping, the
desired entries in the map are changed before passing it to the translator as shown in Listing 11.

Implementation 42

Listing 11: Customize a function map

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

from Emmi.translator import translate_model
from Emmi.model_decoder_tf import ModelDecoderTF

Load default mapping.
actf_map = ModelDecoderTF.default_actf_map.copy()

Change mapping of softmax function.
actf_map["softmax"] = "softmax_exp"

translate_model(model=a_TF_model,
 dest_path="model_export",
 model_name="an_emmi_model",
 qbits=8,
 qbits_intern=12,
 ctype="int8_t",
 actf_mapping=actf_map,
 batchnorm_fold=True,
 shared_bias_quantization=True)

4.4.6 Callbacks and Debug Information
To enable developers to easily access the feature-maps within a model, to analyze the required runtime
per layer (when executing on the EMSA5), or to place callback functions, which are executed after each
layer, the EmmiTranslator model generation is improved.

Debug Information: Feature-Maps

When translating a model with the Option:

generate_debug_information='values'

The EmmiTranslator inserts prints of the feature-maps after each layer in the converted model. The
automatically generated C code that prints the feature-map of a layer is shown in Listing 12. Not only the
feature-map itself is printed, but also the name of the layer that outputs the feature-map.

Listing 12: Example for automatically generated C code printing feature-maps

1
2
3

maxpool2d_flt(&tmp_in, &tmp_out, 2, 2, 2, 2, 1, 1, valid_padding);
printf("Layer name: max_pooling2d | outputs:\n");
vmath_print(&tmp_out);

Debugging Information: Runtime Markers

Another option added to the EmmiTranslator is the insertion of runtime markers. These markers indicate
the start and the end of the execution of a layer. They are printed to the outstream of the target system,
and are analyzed by the Python module EmmiTranslator.tools.runtimeAnalysis.RuntimeAnalysis. When
executing this module, it listens to a given COM port, and measures the time between the markers. When
receiving the last marker, indicating the end of the models inference, a bar graph as shown in Figure 32 is
generated. It shows the runtime time per layer.

Implementation 43

After converting a model with the option:

generate_debug_information='runtime_markers'

And running it on the target system, the runtime analysis is started as shown in Listing 13.

Listing 13: Using the Emmi Runtime Analysis

1
2
3
4
5
6

from EmmiTranslator.tools.runtimeAnalysis import RuntimeAnalysis

h = RuntimeAnalysis(timeout=20,
 serial_port="com6",
 figure_path="figures/out.svg")
h.start()

The Python module for analyzing the runtime per layer in a model can be found in the appendix under
src/EmmiTranslator/tools/runtimeAnalysis.py.

Callbacks

The last option added to the EmmiTranslator is the placement of callback functions after each executed
layer:

generate_debug_information='callback'

This enables the developer to pass a callback function, when calling the inference function of the model.
On each callback, the ID of the executed layer, the name of the layer, the layers output feature-map, the
layers return value and user-defined parameters are passed to the callee.

Figure 32: Bar chart created with the EmmiTranslator runtime
tool

Evaluation 44

5 Evaluation
This chapter describes all testing and evaluation steps performed to verify and evaluate the
implementations. It starts by presenting a brief overview of the implemented unit and integration tests, the
used test scenarios and benchmarks. At the end it is presented how to executed the Emmi testbench in
Spike, a RISC-V simulator.

5.1 Unit Tests
Unit tests are developed and implemented for all layers added to Emmi in this thesis (see Table 2). To
write and integrate unit tests into the testbench, random tensors are generated and applied to the
corresponding TensorFlow implementation. From these results the unit tests for Emmi are generated. The
steps involved in generating a unit test are outlined below:

1. Define test case

2. Implement reference generation using TensorFlow

3. Generate unit test for Emmi using test case definitions and references from TensorFlow

During the course of this thesis, 555 unit tests were implemented, bringing the total number of unit tests
implemented for the Emmi core to 806. All scripts that generate unit tests can be found in the appendix
under src/e5aisuite-testbench/scripts. The actual unit test implementations can be found in src/e5aisuite-
testbench/e5aisuite-testbench/tests.

5.2 Integration Tests
In addition to unit testing, integration testing is performed by translating models into Emmi, executing
them within Emmi, and comparing the results of inference between TensorFlow and Emmi. The steps
involved in implementing an integration test are outlined below:

1. Define test case

2. Generate data for test case

3. Train TensorFlow model

4. Run inferences using trained model and record outputs

5. Convert TensorFlow model to Emmi using EmmiTranslator

6. Write test cases running inferences in Emmi and comparing the outputs with the recorded results

In the course of this thesis, several integration tests are implemented for ten models, resulting in a total of
657 integration tests for Emmi. The models developed for the integration tests used in this thesis are
described in section 5.2.1.

5.2.1 Models for Integration Tests
The integration tests developed during this thesis are focused on testing batch normalization layers (with
and without folding), one-dimensional convolutions and poolings.

Evaluation 45

Scenario and Dataset

All integration tests are trained supervised using the same dataset. This dataset contains six different
waveforms, including two sine waves with different periods, absolute sine, triangle, sawtooth, and pulse.
The networks are tasked with detecting the form of the wave when provided with 35 input samples.

Figure 33 presents an excerpt of all signals in the dataset. The Python script generating the dataset can be
found in the appendix under e5aisuite-testbench/scripts/models/timeseries-datagen.py.

Models

Overall ten models, differing in their architecture, are implemented, trained and exported to Emmi for the
use as integration test. An overview of all implemented models and the layers utilized within the models
is presented in Table 9.

Table 9: Overview of models used in integration tests

Model Name Used Layers

network-timeseries-conv1D-category-concat Conv1d, Concatenate, Flatten, Dense

network-timeseries-conv1D-category-fun Conv1d, Flatten, Dense

network-timeseries-conv1D-category-fun-bn Conv1d, BatchNorm, Flatten, Dense

network-timeseries-conv1D-category Conv1d, Flatten, Dense

network-timeseries-conv1D-category-gap Conv1d, MaxPool1d, GlobalAvgPool1d,
Flatten, Dense

network-timeseries-conv1D-category-gmp Conv1d, MaxPool1d, GlobalMaxPool1d,
Flatten, Dense

network-timeseries-conv1D-category-maxpool Conv1d, MaxPool1d, Flatten, Dense

network-timeseries-conv1D-category-maxpool-causal Conv1d, MaxPool1d, Flatten, Dense

network-timeseries-conv1D-category-avgpool Conv1d, AvgPool1d, Flatten, Dense

network-timeseries-depthwiseconv1d-category DepthwiseConv1d. Conv1d, Flatten, Dense

Figure 33: Signals within the timeseries dataset

Evaluation 46

The TensorFlow Keras implementation of all models listed in Table 9 can be found in the appendix in
e5aisuite-testbench\scripts\models.

Test Cases

For each model, fifteen inferences are run and compared to the reference data. To export the reference
data to the Emmi Testbench a Python script is written.

The Python script can be found in the appendix in e5aisuite-testbench/scripts/models/timeseries-
cexport.py.

5.3 Benchmarks

5.3.1 Network Size and Execution Speed
To compare network size and execution speed when using different data types for weights and biases, a
LeNet-5 is quantized and deployed to the EMSA5. The network size is read out of the EmmiTranslator,
and the performance is measured by counting the number of clock cycles elapsed within a single
prediction.

Table 10 shows the results. The speedup from int32_t to int8_t is 5%, while the reduction in required
memory is 65%. Note that the size reduction from the model stored in 32-bit values to a model stored in
8-bit values is not a factor of four. This is because memory is also allocated for the internal feature-maps,
which are always 32-bit.

Table 10: Network size and execution speed when using different datatypes for weights and biases

Quantization Datatype Size (Kilo Bytes) Size (%) Cycles Speedup

None / Float float 284.46KB 100% 296399159 0.12

8-bit int32_t 284.46KB 100% 34284604 1.0

8-bit int16_t 161.04KB 57% 33231619 1.03

8-bit int8_t 99.32KB 35% 32659232 1.05

The example containing the code for the execution of the benchmark can be found in the appendix under
demos/emmi-LeNet5-demo.

Figure 34: Layers of a LeNet-5

C
onv2D

A
vg. P

ooling 2D

C
onv2D

A
vg. P

ooling 2D

F
latten

D
ense

D
enseInput Output

D
ense

Evaluation 47

5.3.2 Batch Normalization Folding
The effect of batch normalization folding on the performance is tested using the model displayed in
Figure 35. When activating batch normalization folding within the EmmiTranslator, the two Batch
Normalization layers are folded in forward direction.

Figure 36 compares the models performance when using soft-float on the EMSA5. It is visible that the
performance when using batch normalization folding increases by 22%.

Figure 37 compares the models performances when using 8-bit quantization. When folding the models
batch normalization layers, the performance increases by 33%.

The example containing the code for the execution of the benchmark can be found in the appendix under
demos/emmi-bn-fold-demo.

Figure 35: Layers of the model network-timeseries-conv1D-category-fun-bn

C
onv1D

B
atch

N
orm

alization

C
onv1D

B
atch

N
orm

alization

F
latten

D
ense

D
enseInput Output

Figure 36: Speedup of a model using batch normalization
folding (soft-float)

Figure 37: Speedup of a model using batch normalization
folding (8-bit DYINQ)

Evaluation 48

5.3.3 MLPerf Tiny Image Classification
To evaluate the accuracy of a network using different internal feature map bit-widths, the MLPerf Tiny
image classification benchmark is chosen. The goal of MLPerf Tiny is to "provide a representative set of
deep neural networks and benchmarking code to compare performance between embedded devices" [49].
MLPerf Tiny can be used to evaluate devices in terms of accuracy, performance and efficiency. As the
EMSA5 is implemented as an IP core on an FPGA board, only the accuracy benchmark is run, as all
devices listed in the MLPerf Tiny database are in silicon. [50]

Table 11 lists the results of the first 1000 samples of the MLPerf Tiny Image Classification Benchmark,
executed in Emmi on the EMSA5. It is visible that the accuracy increases with the bit-width. It also
reaches the 85% required to participate in the MLPerf Tiny Image Classification Benchmark.

Table 11: Accuracy of different feature map bit-widths when running the MLPerf Tiny Image
Classification benchmark in Emmi

Quantization bit-width Feature map bit-width Accuracy

8-bit 13-bit 88.1%

8-bit 12-bit 87.0%

8-bit 10-bit 86.2%

8-bit 8-bit 78.3%

5.4 Vectorized Testbench in Spike
To execute all unit and integration tests with the RISC-V Vector Extension Zve32x, a compiler with
support for automatic vectorization and an ISA simulator with support for vector instructions is required.
As compiler GCC14 is used, and as simulator Spike. Since Spike is only compatible with Linux
platforms, both must be build for Linux.

5.4.1 Setup

GCC with Auto-Vector Support

At first the GNU C Compiler 14 is build on the destination platform. The build is configured for ilp32 (no
hardware floating-point unit) and the use of multilib, which generates two different versions of the C
standard library: One for platforms without vector support, and one for platforms with vector support.

git clone https://github.com/riscv-collab/riscv-gnu-toolchain.git –recursive
cd riscv-gnu-toolchain
./configure --prefix=/opt/riscv-gnu-toolchain-14 --with-arch=rv32gc --with-
abi=ilp32 –with-multilib-generator="rv32imc-ilp32--;rv32gcv-ilp32--"
make

Spike

The build process of spike, the RISC-V simulator, is uncomplicated. After cloning the sources from
GitHub, the prefix of the installed RISC-V compiler is set and the build process is started. When running
‘make install’, the Spike binaries are copied into the directory of the RISC-V toolchain.

git clone https://github.com/riscv-software-src/riscv-isa-sim.git --recursive
cd riscv-isa-sim

Evaluation 49

mkdir build
cd build
../configure --prefix=/opt/riscv-gnu-toolchain-14
make
make install

PK

PK is a proxy kernel for spike. It allows the use of I/O functionality within spike by proxying I/O system
related calls to the host computer. The build of PK must be compatible with the newlib built during the
RISC-V GCC build. As the Emmi testbench is to be run with the vector extension, PK is configured for
the vector extension. [51]

git clone https://github.com/riscv-software-src/riscv-pk.git --recursive
cd riscv-pk
mkdir build
cd build
../configure --prefix=/opt/riscv-gnu-toolchain-14 --host=riscv32-unknown-elf –with-
arch=rv32imcv_zicsr_zifencei

Because PK is built with vector extension and -O2, loops accessing I/O components may be vectorized,
causing the system to fail. To prevent this, the compiler optimization is set to -O0 by manually editing the
generated makefile. Then PK is built and installed.

make
make install

5.4.2 Running Testbench
To run the vectorized testbench, the testbench is compiled and afterwards spike is started with the options:

spike --isa=rv32imfcv_zicsr_zifencei --varch=vlen:128,elen:32 $RISCV/riscv32-
unknown-elf/bin/pk build/riscv32-unknown-elf-gcc_spike/emmi-testbench.elf

This will enable the full set of RISC-V vector extensions (Zve32x as standalone is not supported by
Spike), set the size of the vector registers, enable the proxy kernel and load the compiled binary, which is
run immediately after spike is started.

Embedded AI Application 50

6 Embedded AI Application
This chapter presents an embedded AI application developed at the Fraunhofer IPMS. It introduces the
scenario and the hardware used, as well as the tasks performed within the scope of this thesis.

6.1 Introduction
Conveyors are automated mechanical devices, consisting of belts stretched over pulleys. They facilitate
the swift and efficient movement of goods and materials. They are versatile, capable of transporting
everything from small items to large, heavy objects, and are essential in sectors ranging from
manufacturing to retail.

For an optimal performance, the belt of the conveyor needs to beat an optimal tension. To determine if the
belt of a conveyor must be tightened or loosened to reach the optimal tension, an accelerometer to
measure lateral movements, an gyrometer the measure to measure angular movements and a
magnetometer to measure differences in the magnetic field caused by the engine are used. An Embedded
AI application should analyze the sensor data, and predict if the belt is too loose or too tight.

6.2 State of the Art

6.2.1 Conveyor
For the project a miniature conveyor is provided by a project partner. It has a length of approximately 20
centimeters and has the sensors already mounted. The magnetometer is mounted directly beside the
engine, while the accelerometer and the gyrometer are both mounted beside the screw used to adjust the
tension. Figure 38 displays a sketch of the setup.

Figure 38: Sketch of the hardware setup

Conveyor belt

EngineAdjustable belt tension
Magnetometer

Accelerometer,
Gyrometer

Embedded AI Application 51

6.2.2 Dataset
The provided dataset contains six categories and 10000 elements per category. Category ‘0’ means loose,
category ‘5’ means tight as shown in Figure 39. The optimal tension of the conveyor is reached in
category ‘3’. Each entry contains 333 samples of all three sensors, in all their axes. Meaning for a single
entry in the dataset, 2997 sensor values are provided.

6.2.3 Task
The hardware including all the sensors, the embedded software to read out the sensors, and a dataset to
train a neural network is already provided by project partners. The task is to design, train, convert and use
a neural network to predict the tension of the belt on an embedded system using a minimalist version of
the EMSA5, employing only 64KB ITCM, 64KB DTCM and support for RISC-V imc.

6.3 Embedded AI Workflow
In order bring a model to the EMSA5, the Embedded AI Workflow, described in section 2.3.1 was used.
During the process, multiple models, with different architectures were designed until a model, executable
on the minimalists version of the EMSA5, was found. The model (ID 3 in Table 12) was then converted
using the EmmiTranslator and tested on the EMSA5.

Table 12: Overview of conveyor models

ID Inputs Samples per Input Parameters Float Accuracy Quantized Size Inference Time on
EMSA5

1 Acc, Gyr, Mag 333 231396 98% 382 KB 33 seconds*

2 Acc, Gyr, Mag 100 74988 94% 136 KB 7 seconds*

3 Acc, Mag 100 18701 91% 26 KB 2 seconds

*Inference time measured on EMSA5 with 256MB memory

For each model, a graphic displaying the detailed architecture can be found in the appendix under
models/*.

6.3.1 Test model using Live Data
The model is tested using live data recorded directly from the sensors connected to the EMSA5. After 100
samples from the accelerometer and the magnetometer are recorded, the data is preprocessed by scaling it
into a range between zero and one. Subsequent to the preprocessing, the inference is performed.

Figure 39: Overview of categories within
the conveyor dataset

Loose TightOptimal

0 1 2 3 4 5

Embedded AI Application 52

6.3.2 Adding support for a Display
The final step is to add support for a display. The interface should show a loose or tight conveyor belt,
depending on the current classification of the measurements. A seven inch NEXTION NX8048P070 is
chosen as display. The interface shown by the display is controlled by sending UART commands. The
interface itself is designed in the software provided by NEXTION. The interface is then stored on the
controller of the display. Figure 40 shows the structure of the embedded AI application. The FPGA board
that performs the inference is mounted under the display. The FPGA board on the right is placed for
demonstration purposes and is not connected to the conveyor. 52

Figure 40: Demo setup of the conveyor application [52]

Conclusion 53

7 Conclusion

7.1 Summary
The aim of this master’s thesis was to extend the functionality of the inference-only embedded AI
framework Emmi. The foundational groundwork for this extension was laid in section two, which
provided an overview of the EMSA5, Emmi, quantized neural networks and delved into the theory
required to implement new functionality.

The following section three analyzed the architecture and feature set of the embedded AI framework
Emmi. It stated opportunities for the frameworks improvement and presented an overview of the
functions planned for development during the course of the thesis. Section four continued with the
implementation of the convolutional and pooling operations, followed by the implementation of the a
batch normalization layer and the integration of batch normalization folding into the EmmiTranslator. The
section was closed by describing general improvements made to the framework in order to reduce the
storage requirements of models, the build system, and the accuracy of quantized neural networks. These
implemented functionalities were evaluated in section five. An overview of the implemented unit and
integration tests were given and benchmarks on network size, accuracy and performance were executed.
Section six presented an embedded AI application example: It predicts the tension of a belt.

7.2 Research Questions
Four research questions were stated in section 1.1.1. Question Q1, asking for the implementation of a
batch normalization was answered in section 4.3. The question of why a folding of batch-normaization is
considered was answered is 3.3.1, and details of the implementation were given in 4.3.3. Questions Q2
and Q3 were both explored though discussions in section 3.2.4, the resulting implementations are
described in section 4.4. Question Q4 led to a RISC-V simulator called spike, which was used to run the
Emmi testbench as described in 5.4.

In addition to the research questions, section 1.1.1 listed secondary points, two of which were fully
investigated. S1 was addressed in section 6 and S2 in sections 2.5.1 and 4.1.2.

7.3 Final Outcome
Throughout this thesis, all research questions have been resolved, and the necessary extensions have been
successfully implemented. In addition, two of the three secondary points were addressed, and several
optimizations were made to the framework.

Significant improvements have been achieved in the Emmi Core. It now supports 1D convolutional
layers, batch normalization, concatenation and smaller datatypes, effectively reducing the memory
requirements of quantized models. The EmmiTranslator now supports the folding of batch normalization
layers through the integration of the Python package tf-batchnorm-fold, which has been enhanced to work
with the full feature-set of Emmi.

Finally, a practical example of embedded AI was presented to demonstrate the real-world applicability of
Emmi.

Conclusion 54

7.4 Perspective
Emmi offers exciting possibilities in the world of embedded AI projects. It has already been used in two
projects at the Fraunhofer IPMS, leveraging its wide range of functionality. With the upcoming support
for Long short-term memory (LSTM) networks alongside a dedicated user interface for model
conversion, the usability and feature set of the framework will be further extended.

Appendix 55

Appendix
The appendix of this thesis is supplied as a digital archive, that includes:

• Demos

• Model illustrations

• Online references

• Source Code

References 56

References
[1] Tech Trends 2023, Deloitte, [online]. Available:

https://www2.deloitte.com/content/dam/insights/articles/us175897_tech-trends-2023/DI_tech-trends-2023.pdf
accessed: 2024-01-10

[2] Karen Hao, Here are 10 ways AI could help fight climate change, MIT Technology Review, [online]. Available:
https://www.technologyreview.com/2019/06/20/134864/ai-climate-change-machine-learning/ accessed: 2024-
01-10

[3] What is predictive maintenance?, IBM Services, [online]. Available: https://www.ibm.com/topics/predictive-
maintenance accessed: 2024-01-10

[4] Rich Collins, How the RISC-V ISA Offers Greater Design Freedom and Flexibility, ChipEstimate, [online].
Available: https://www.chipestimate.com/How-the-RISC-V-ISA-Offers-Greater-Design-Freedom-and-
Flexibility/Synopsys/Technical-Article/2024/03/05 accessed: 2024-04-18

[5] TensorFlow Lite for Microcontrollers, TensorFlow, [online]. Available:
https://www.tensorflow.org/lite/microcontrollers accessed: 2024-01-10

[6] AIfES for Arduino®, README.md AIfES_for_Arduino, Fraunhofer IMS, [online]. Available:
https://github.com/Fraunhofer-IMS/AIfES_for_Arduino accessed: 2024-01-10

[7] Pascal Pfeiffer, Development of a Machine Learning Framework for Quantized Neural Networks on Embedded
RISC-V Systems, 2023

[8] RISC-V “V” Vector Extension Version 1.0, RISC-V International, [online]. Available:
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
accessed: 2024-03-11

[9] Sarah L. Harris, David Money Harris, Digital Design and Computer Architecture RISC-V Edition, Morgan
Kaufmann, 2022

[10]RISC-V International, RISC-V International Members, [online]. Available: https://riscv.org/members/ accessed:
2024-04-17

[11]Andrew Waterman, Krste Asanovic, The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document
Version 20191213, RISC-V International, Available:
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
accessed: 2024-04-18

[12]RISC-V “V” Vector Extension Version 1.0, RISC-V International, Available: https://github.com/riscv/riscv-v-
spec/releases/download/v1.0/riscv-v-spec-1.0.pdf accessed: 2024-04-18

[13]TinyML Foundation, Homepage, [online]. Available: https://www.tinyml.org/ accessed: 2024-03-18
[14]H. -Y. Lin, Embedded Artificial Intelligence: Intelligence on Devices, Computer, vol. 56, no. 9, pp. 90-93, 2023,

doi: 10.1109/MC.2023.3280397
[15]Getting started with X-CUBE-AI Expansion Package for Artificial Intelligence (AI), STMicroelectronics,

UM2526, Rev 8, 2022
[16]Pascal Pfeiffer, Fraunhofer IPMS, Internal Resoruce
[17]Hideaki Abe, Embedded AI-Accelerator DRP-AI, Renesas Electronics Corporation, 2021
[18]Saheli Bhattacharjee, The MLPerf™ Tiny benchmark: Reproducing v1.0 results and providing new results for

v1.1, Krai Ltd, 2023
[19]Let’s make your AI tiny and fast, Plumber AI, [online]. Available: https://plumerai.com/benchmark accessed:

2024-03-11
[20]Keras layers API, Keras API reference, [online]. Available: https://keras.io/api/layers/ accessed: 2024-03-19
[21]Francois Chollet, Deep Learning with Python, Second Edition, Manning Publications, 2021
[22]Jörg Frochte, Maschinelles Lernen, HANSER, 2019
[23]tf.keras.layers.Conv1D, TensorFlow, [online]. Available:

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv1D accessed: 2024-03-30
[24]tf.keras.layers.DepthwiseConv1D, TensorFlow, [online]. Available:

https://www.tensorflow.org/api_docs/python/tf/keras/layers/DepthwiseConv1D accessed: 2024-03-30
[25]tf.keras.layers.AveragePooling1D, TensorFlow, [online]. Available:

https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling1D accessed: 2024-03-30
[26]tf.keras.layers.MaxPool1D, TensorFlow [online]. Available:

https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool1D accessed: 2024-03-30
[27]tf.keras.layers.GlobalAveragePooling1D, TensorFlow, [online]. Available:

https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalAveragePooling1D accessed: 2024-03-30
[28]tf.keras.layers.GlobalMaxPool1D, TensorFlow, [online]. Available:

https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalMaxPool1D accessed: 2024-03-30
[29]tf.keras.layers.GlobalAveragePooling2D, TensorFlow, [online]. Available:

https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalAveragePooling2D accessed: 2024-03-30

https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalAveragePooling2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalMaxPool1D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalAveragePooling1D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool1D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling1D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/DepthwiseConv1D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv1D
https://keras.io/api/layers/
https://plumerai.com/benchmark
https://www.tinyml.org/
https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf
https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://riscv.org/members/
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/Fraunhofer-IMS/AIfES_for_Arduino
https://www.tensorflow.org/lite/microcontrollers
https://www.chipestimate.com/How-the-RISC-V-ISA-Offers-Greater-Design-Freedom-and-Flexibility/Synopsys/Technical-Article/2024/03/05
https://www.chipestimate.com/How-the-RISC-V-ISA-Offers-Greater-Design-Freedom-and-Flexibility/Synopsys/Technical-Article/2024/03/05
https://www.ibm.com/topics/predictive-maintenance
https://www.ibm.com/topics/predictive-maintenance
https://www.technologyreview.com/2019/06/20/134864/ai-climate-change-machine-learning/
https://www2.deloitte.com/content/dam/insights/articles/us175897_tech-trends-2023/DI_tech-trends-2023.pdf

References 57

[30]tf.keras.layers.GlobalMaxPool2D, TensorFlow, [online]. Available:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalMaxPool2D accessed: 2024-03-30

[31]Understanding masking & padding, TensorFlow, [online]. Available:
https://www.tensorflow.org/guide/keras/understanding_masking_and_padding accessed: 2024-03-30

[32]tf.keras.layers.Concatenate, TensorFlow, [online]. Available:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Concatenate accessed: 2024-03-30

[33]tf.keras.layers.BatchNormalization, TensorFlow, [online]. Available:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization accessed: 2024-03-30

[34]Sergey Ioffe, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,
Google Inc, 2015, [online]. Available: https://arxiv.org/abs/1502.03167 accessed: 2024-02-13

[35]Benoit Jacob, Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference,
Google Inc., 2017, [online]. Available: https://arxiv.org/abs/1712.05877 accessed: 2024-02-13

[36]Edouard Yvinec, To Fold or Not to Fold: a Necessary and Sufficient Condition on Batch-Normalization Layers
Folding, Sorbonne Université | CNRS, 2022, [online]. Available: https://arxiv.org/abs/2203.14646 accessed:
2024-02-13

[37]Edouard Yvinec, Tensorflow-batchnorm-folding 1.08, PyPI, [online]. Available:
https://pypi.org/project/tensorflow-batchnorm-folding/1.0.8/ accessed: 2024-02-13

[38]Zhewei Yao, HAWQ-V3: Dyadic Neural Network Quantization, Proceedings of the 38 th International
Conference on Machine Learning, PMLR 139, 2021, [online]. Available: https://arxiv.org/abs/2011.10680
accessed: 2024-04-09

[39]Quantization aware training, TensorFlow, [online]. Available:
https://www.tensorflow.org/model_optimization/guide/quantization/training accessed: 2024-04-05

[40]Sungrae Kim, Zero-Centered Fixed-Point Quantization With Iterative Retraining for Deep Convolutional Neural
Network-Based Object Detectors, IEEE Access, 2021

[41]Post-training quantization, TensorFlow, [online]. Available:
https://www.tensorflow.org/lite/performance/post_training_quantization accessed: 2024-06-22

[42]Quantization. PyTorch, [online]. Available: https://pytorch.org/docs/stable/quantization.html accessed: 2024-06-
22

[43]QPyTorch Functionality Overview, QPyTorch, [online]. Avaialbe:
https://qpytorch.readthedocs.io/en/latest/examples/tutorial/Functionality_Overview.html accessed: 2024-06-22

[44]Documenting the code, Doxygen Developers, [online]. Available:
https://www.doxygen.nl/manual/docblocks.html accessed: 2024-05-22

[45]PEP 257 – Docstring Conventions, Python Enhancement Proposals, [online]. Available:
https://peps.python.org/pep-0257/ accessed: 2024-05-22

[46]Auto-vectorization in GCC, Free Software Foundation, [online]. Available: https://gcc.gnu.org/projects/tree-
ssa/vectorization.html accessed: 2024-06-20

[47]PEP 621 – Storing project metadta in pyproject.toml, Python Enhancement Proposals, [online]. Available:
https://peps.python.org/pep-0621/ accessed: 2024-05-07

[48]Pascal Pfeiffer, Update TF and fold Conv1D layers, [online]. Available: https://gitlab.com/edouardyvinec/batch-
normalization-folding/-/merge_requests/4 accessed: 2024-05-08

[49]MLPerf™ Tiny Deep Learning Benchmarks for Embedded Devices, README.md, ML Commons, [online].
Available: https://github.com/mlcommons/tiny accessed: 2024-06-10

[50]MLPerf Inference: Tiny Benchmark Suite Results, ML Commons, [online]. Available:
https://mlcommons.org/benchmarks/inference-tiny/ accessed: 2024-06-10

[51]RISC-V Proxy Kernel and Bootloader, README.md, RISC-V International, [online]. Available:
https://github.com/riscv-software-src/riscv-pk accessed: 2024-06-05

[52]Sebastian Lassak, Predictive Maintenance Demonstrator for Industrial Equipment, Fraunhofer IPMS, 2024

-last page-

https://github.com/riscv-software-src/riscv-pk
https://mlcommons.org/benchmarks/inference-tiny/
https://github.com/mlcommons/tiny
https://gitlab.com/edouardyvinec/batch-normalization-folding/-/merge_requests/4
https://gitlab.com/edouardyvinec/batch-normalization-folding/-/merge_requests/4
https://peps.python.org/pep-0621/
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://peps.python.org/pep-0257/
https://www.doxygen.nl/manual/docblocks.html
https://qpytorch.readthedocs.io/en/latest/examples/tutorial/Functionality_Overview.html
https://pytorch.org/docs/stable/quantization.html
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/model_optimization/guide/quantization/training
https://arxiv.org/abs/2011.10680
https://pypi.org/project/tensorflow-batchnorm-folding/1.0.8/
https://arxiv.org/abs/2203.14646
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1502.03167
https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Concatenate
https://www.tensorflow.org/guide/keras/understanding_masking_and_padding
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalMaxPool2D

	1 Introduction
	1.1 Scope of Work
	1.1.1 Goal and Research Questions

	1.2 Contents of following chapters

	2 Fundamentals
	2.1 RISC-V
	2.2 EMSA5
	2.3 Embedded AI
	2.3.1 Embedded AI Workflow
	Step 1: Use Case Definition and Requirements Analysis
	Step 2: Model Development
	Step 3: Embedded System Deployment

	2.4 Emmi
	2.4.1 Components
	2.4.2 Features

	2.5 Machine Learning Operations
	2.5.1 Convolutions
	Convolution 1D
	Depth-wise Convolution 1D

	2.5.2 Pooling Operations
	Average Pooling 1D
	Max Pooling 1D
	Global Average Pooling 1D
	Global Max Pooling 1D
	Global Average Pooling 2D
	Global Max Pooling 2D

	2.5.3 Padding and Dilation
	Padding for 1D Data
	Dilation for 1D Data

	2.5.4 Concatenate
	2.5.5 Batch Normalization
	Example
	Folding

	2.6 Quantized Neural Networks
	2.6.1 Introducing Quantized Neural Networks
	True Integer Quantization
	Fake Integer Quantization
	Dynamic Quantization
	Static Quantization
	Post Training Quantization
	Quantization Aware Training

	2.6.2 DYINQ
	Quantizing Floats
	Matrix Multiplication
	Elementwise Addition
	Elementwise Multiplication
	Division
	Rescale

	2.6.3 Runtime Accuracy Improvements
	Accuracy Gains when Increasing Feature-Map Bit-Widths

	2.6.4 Quantization against Soft-float
	2.6.5 Fix-Point Quantization

	3 Analysis and Design
	3.1 Software Requirements
	3.2 Analysis of Existing Components
	3.2.1 EmmiTranslator
	3.2.2 Emmi Core
	3.2.3 Vmath
	3.2.4 Opportunities for Improvements
	Usage of lower bit data types
	Accuracy Improvements

	3.3 Design Decisions
	3.3.1 Batch Normalization
	3.3.2 Project Structure
	Approach

	3.3.3 Build System
	Parameters

	3.3.4 EmmiTranslator
	3.3.5 Emmi Core

	4 Implementation
	4.1 Convolutional Operations
	4.1.1 One-Dimensional Convolution
	4.1.2 Depth-wise Convolution
	4.1.3 Floating-Point and Quantized Implementation
	Calculate output quantization parameters
	Write bias into output tensor
	Apply current kernel element to current input feature
	Write result of current input feature to output tensor
	Rescale operation

	4.2 One-Dimensional Pooling Operations
	4.2.1 Max Pooling
	4.2.2 Average Pooling
	4.2.3 Global Max Pooling
	4.2.4 Global Average Pooling
	4.2.5 Floating-Point and Quantized Implementation

	4.3 Batch Normalization
	4.3.1 Floating-Point Implementation
	4.3.2 Fake Quantized Implementation
	4.3.3 Folding
	Analyzing the Python Package
	Adding Compatibility to TensorFlow 3.11
	Add Support for Sequential Models
	Add Support for 1D Convolutions
	Miscellaneous Improvements
	Fork and Merge Request
	Integration into EmmiTranslator

	4.4 General Improvements
	4.4.1 Build System
	4.4.2 Native 8- and 16-bit type support
	4.4.3 Feature-Map Bit-width
	4.4.4 Shared Bias Quantization
	4.4.5 Activation Function Selection
	4.4.6 Callbacks and Debug Information
	Debug Information: Feature-Maps
	Debugging Information: Runtime Markers
	Callbacks

	5 Evaluation
	5.1 Unit Tests
	5.2 Integration Tests
	5.2.1 Models for Integration Tests
	Scenario and Dataset
	Models
	Test Cases

	5.3 Benchmarks
	5.3.1 Network Size and Execution Speed
	5.3.2 Batch Normalization Folding
	5.3.3 MLPerf Tiny Image Classification

	5.4 Vectorized Testbench in Spike
	5.4.1 Setup
	GCC with Auto-Vector Support
	Spike
	PK

	5.4.2 Running Testbench

	6 Embedded AI Application
	6.1 Introduction
	6.2 State of the Art
	6.2.1 Conveyor
	6.2.2 Dataset
	6.2.3 Task

	6.3 Embedded AI Workflow
	6.3.1 Test model using Live Data
	6.3.2 Adding support for a Display

	7 Conclusion
	7.1 Summary
	7.2 Research Questions
	7.3 Final Outcome
	7.4 Perspective

