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Preface I

Abstract
This  master’s  thesis  presents  the  extension  of  an  embedded  AI  framework  for  floating-point  and 
quantized neural networks. The framework is extended with 1D convolutions, batch normalization, batch 
normalization folding, concatenation and global pooling while also lowering the memory requirements 
for quantized neural networks. 

At the beginning of this thesis, the challenges of embedded AI are explained and the RISC-V IP core used 
is  presented.  The  embedded AI  framework Emmi is  introduced,  the  fundamentals  for  understanding 
convolutions  and  batch  normalization  are  presented,  and  a  brief  overview  of  its  features  and  the 
quantization technique used is given.

Before implementing the extensions, Emmi is analyzed and the requirements are summarized. During the  
test-driven implementation, unit and integration tests ensure the functionality of the framework. After 
testing and benchmarking it on a non-vector RISC-V system, it is compiled with automatic vectorization  
and tested in a RISC-V simulator that supports vector instructions. 

Finally, it is shown that the framework can be used in a predictive maintenance application.
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1 Introduction
In today's age artificial intelligence is not limited to the cloud but is seamlessly integrated into the fabric  
of our devices. Embedded AI holds the potential to revolutionize various fields, including smart cities, 
medical  devices  with  advanced privacy  requirements,  autonomous  vehicles,  and  the  factory  floor.  It 
integrates intelligence into everyday devices, acting as a silent orchestrator behind the scenes. [1, 2, 3]

Embedded AI systems are essential in addressing the demand for smart and diverse low power, low cost  
and high efficiency applications. Embedded AI can be used to create intelligent monitoring systems that 
operate on sensor signals while fully processing the data on embedded systems. This sensor data may 
include information from a privacy critical application, a time-sensitive factory floor, or an agricultural  
device without dedicated power supply. 

The core of an embedded device capable of running neural networks is its processor. Currently, this is 
often  a  device  ISA compatible  to  RISC-V,  which  has  gained  popularity  in  recent  years  due  to  its  
flexibility, scalability and, simplicity. [4]

At the Fraunhofer IPMS in Dresden the RISC-V compatible IP core EMSA5 is developed. It provides 
support for running neural networks using TensorFlow Lite Micro (TFLM) [5], Artificial Intelligence for 
Embedded Systems (AIfES) [6] and Emmi (formerly known as EMSA5 AI Suite) [7], an embedded AI 
Framework developed at the Fraunhofer IPMS. Emmi features a vectorizable codebase, this means that it  
is  designed  in-order  to  be  automatically  vectorized  by  the  compiler  and  executed  using  vector  
instructions. For embedded integer only RISC-V systems this is the ISA extension Zve32x. [8]

1.1 Scope of Work
This thesis will explain the fundamentals of embedded AI and is going to deal with the framework Emmi. 
During this thesis the functionality and code-base of Emmi will be extended, improved and refactored. In  
particular, support for 1D convolutions, 1D average and max pooling, global average and max pooling, 
and the concatenation of tensors required for some residual networks will be added. In addition, several  
ways  to  support  neural  networks  using  batch  normalization  will  be  presented  and  implemented  in 
program code. All implemented features should take into account the compiler requirements for automatic 
vectorization of C code.

Besides  the  expansion  of  Emmi  the  thesis  will  evaluate  Emmi  in  a  simulator,  capable  of  running  
vectorized RISC-V code. The challenges of using a simulator will also be presented. 
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1.1.1 Goal and Research Questions
One goal of this master thesis is to extend the functionality of the inference-only embedded AI framework 
Emmi. It is currently limited to a small number of layers, which will be extended and improved.

Namely the following layers will be implemented:

• 1D convolution
• 1D average pooling

• 1D max pooling
• Global 1D & 2D poolings

• Concatenation
• Batch normalization

In addition, this work should answer the following questions:

Q1. How to implement batch normalization for Emmi and should the folding of batch normalization 
parameters be considered, and if so, how can it be implemented?

Q2. How to reduce the memory footprint of quantized Emmi models?

Q3. How to improve the accuracy of quantized networks?

Q4. How to use a RISC-V simulator to run Emmi when compiling with automatic vectorization?

Besides the questions above, the following secondary points can also be addressed:

S1. Embedded AI Application Example
An Example covering the process from training to a real-world embedded AI application

S2. How to implement a depth-wise convolution?

S3. How  integrate  a  Strassen-based  matrix  multiplication,  replacing  the  current  row-column 
approach?

1.2 Contents of following chapters
After the introduction, the second section of this thesis gives an overview of the technical fundamentals 
related to the embedded AI framework Emmi. It starts with an introduction to RISC-V, which is the main  
platform for  Emmi,  introduces  the  IP core  EMSA5,  and  gives  an  overview of  the  fundamentals  of 
embedded  AI  and  the  Emmi  framework.  It  also  presents  the  theory  of  the  layers  and  operations 
implemented in this work, as well as the quantization technique DYINQ. The third section analyzes the 
current state of Emmi and discusses the design decisions made to extend and improve the framework. 
This  is  followed  by  section  four,  which  briefly  presents  the  implementation  of  the  layers  and  the  
integration of batch normalization folding. Section five evaluates the framework’s extensions in terms of 
accuracy  and  performance.  It  also  covers  the  use  of  a  RISC-V simulator.  Section  six  presents  an 
embedded AI application and is followed by section seven, which concludes the thesis.
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2 Fundamentals
The chapter provides a comprehensive overview of the fundamental concepts and technologies used in 
this work. It begins by introducing the RISC-V instruction set architecture and the IP Core EMSA5, for  
which the embedded AI Framework Emmi was developed initially. It gives a brief overview of Embedded 
AI, its workflow and all operations implemented during this thesis. Concluded is the chapter with and 
introduction of the used quantization technique DYNQ.

2.1 RISC-V
The Instruction Set Architecture (ISA) RISC-V, pronounced "risk five," was introduced by UC Berkeley 
in 2010. Its manual is licensed under the Creative Commons Attribution 4.0 International License. In 
literature RISC-V is described as the world's first open-source ISA with widespread commercial backing 
[9]. Currently, RISC-V International, a non-profit organization comprising members such as SiFive, Intel, 
and Fraunhofer, oversees its development. [10]

The  name RISC-V hints  a  Reduced  Instruction  Set  Computer  (RISC)  architecture.  It  contrasts  with 
Complex Instruction Set Computers (CISC) like x86, which employ varying instruction lengths and aim 
to cover every special case with a dedicated instruction. Despite this foundational simplicity, RISC-V 
processors can incorporate more than the basic 47 instructions through ISA extensions. These extensions 
introduce additional, standardized sets of instructions that hardware designers can implement to tailor  
specific functionalities or enhance performance. RISC-V International has already standardized various 
extensions,  including  the  "F"  extension,  which  introduces  single-precision  floating-point  capabilities. 
There are numerous other extensions either in development or already standardized. [11]

Vendor-specific extensions are also allowed, fostering a modular system that accommodates specialized 
cores and enables designers to fine-tune their cores based on performance, power, and size considerations.

The RISC-V Vector Extension (RISC-V V) extends the instruction set to approximately 300 instructions. 
It defines two subsets for embedded processors: Zve32x for 32-bit integer operations and Zve32f for 32-
bit  floating-point computations.  The extension Zve32x is partially supported by the IP core EMSA5, 
which is introduced in the following section. [12]

2.2 EMSA5
The EMSA5 is a 32-bit RISC-V IP core developed in-house at the Fraunhofer IPMS located in Dresden. 
This core offers support for a range of RISC-V instruction sets, including I, M, C, Zicsr, and Zifencei. 
Furthermore, it partially accommodates the embedded vector instruction set, Zve32x.

The EMSA5 IP core comes in various configurations, offering different peripheral and memory options. 
The  version  utilized  in  this  thesis  incorporates  a  set  associative  64KB/4-way  cache,  particularly  in 
response to matrix multiplication benchmarks utilizing vector instructions. [7]

Moreover, the version employed in this thesis includes:

• 256 KB ITCM dedicated for program code

• 4 KB DTCM dedicated for data

• 4 KB SRAM usable for data and instructions

• 256 MB DDRRAM for data and instructions
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• Two 32-bit timers, I2C, SPI, UART, a watchdog, and eight GPIO pins.

As evaluation platform the FPGA development board Arty A7-100T is used.

2.3 Embedded AI
Embedded AI is the name for a field of technologies dealing with artificial intelligence on embedded  
systems. The TinyML foundation describes embedded AI as “hardware, algorithms and software capable 
of  performing  on-device  sensor  data  analytics  at  extremely  low  power”  [13].  When  developing  an 
embedded AI application, a specific workflow (described in section  2.3.1) is required. It includes the 
development  and  optimization  of  neural  networks  for  specific  hardware  using  techniques  such  as 
approximation, batch normalization folding (section 2.5.5) and quantization (section 2.6). [14]

Currently embedded AI frameworks are primarily focused on inferences (a known exception is AIfES [6]) 
and deployment to embedded devices rather than the creation and training of neural networks. These 
frameworks provide tools to convert and run trained models on the destination platform. Due to heavily 
limited resources, compromises may be necessary when performing inferences on embedded devices. For  
instance,  some devices lack a floating-point  unit,  which necessitates converting models to integer or  
fixed-point  numbers,  potentially  resulting  in  reduced  accuracy  but  a  smaller  size  and  an  improved 
inference  time. 
[35, 7]

Table 1 gives an overview of embedded AI Frameworks, many of them are vendor specific and bundled 
with a manufacturers hardware, most of them are proprietary. 

Table 1: Overview of embedded AI Frameworks

Framework Vendor Officially
Supported Platforms

Vendor 
Specific

Proprietary Ref.

AIfES Fraunhofer IMS ARM, Atmel, RISC-V No No [6]

Cube.AI STMicroelectronics ARM Yes Yes [15]

Emmi Fraunhofer IPMS RISC-V Yes Yes [16]

DRP-AI Renesas ARM / DRP-AI Accelerator Yes Yes [17]

KRAI KRAI ARM No Yes [18]

Plumerai Plumberai ARM No Yes [19]

TFLM Google ARM, RISC-V, Xtensa No No [5]

2.3.1 Embedded AI Workflow
The workflow when developing an embedded AI application can be divided into three major steps:

1. Use case definition and requirements analysis

2. Model development

3. Embedded system deployment

All steps may vary depending on the used framework. The here described steps can be applied to TFLM,  
AIfES and Emmi.
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Step 1: Use Case Definition and Requirements Analysis

A typical embedded AI workflow begins with defining the application's use case and requirements. Next, 
available  resources are  gathered,  and the hardware platform that  best  suits  the desired use case and 
requirements in terms of cost, performance and power requirements is selected. This platform may consist  
of  a  microcontroller  or  FPGA with  storage  and connectivity  options.  Additionally,  a  preselection  of 
possible embedded AI frameworks is made by considering their features and supported platforms.

Step 2: Model Development

To build and train the neural network, sensor data is collected from the selected real-world scenario and  
preprocessed. If not enough data is available, data augmentation, or a simulation of the scenario should be 
considered.  Once enough data  has  been gathered a  model  is  built,  trained,  and tested using desktop 
machine  learning frameworks  such as  TensorFlow or  PyTorch.  The future  embedded AI  use  case  is 
always considered while building the model, this means that the number of parameters is reduced as much 
as possible, and operations and layers used are supported in at least one of the preselected embedded AI 
frameworks.

Step 3: Embedded System Deployment

Following the development and training of the model, the embedded AI framework is selected. Criteria  
include the usability, support of the used network architecture, memory requirements, and the support for 
the  used  platform.  The  converter  tool  of  the  selected  embedded  AI  framework  is  started,  and  the  
conversion options, which include a range of optimizations from quantization to the selection of (faster) 
approximated  activation  functions,  are  set.  Once  the  model  is  converted,  it  is  integrated  into  the 
embedded  application.  If  required,  the  pipeline  for  preprocessing  and  using  the  recorded  data  is 
implemented.  Afterwards the model is ready to be tested on the embedded system. If the generated model  
is too big or too slow, the process is restarted from step “Build and train model”.

Figure 1: First steps when developing an embedded AI application

Use Case Requirements System defintion
Preselect

embedded AI
frameworks

Figure 2: Data preprocessing and model creation

Collect
sensor data

Preprocess sensor
 data Build and train model Test model

Figure 3: build embedded AI application

Convert model
Integrate model and 

framework into
embedded project

Implement 
preprocessing on 
embedded system

Test embedded
AI application 
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2.4 Emmi
Emmi is  an inference-only AI framework designed to run neural  networks on embedded systems.  It  
offers a layer-based interface for neural networks and is completely written in C. It supports floating-point 
and integer operations with quantized weights, biases and feature-maps. Models for Emmi are converted 
from TensorFlow Keras, while sequential and functional models are supported. 

2.4.1 Components
Emmi compromises three different components as shown in Figure 4. The first component is the model 
converter, which takes trained TensorFlow Keras models and converts them into C code invoking the 
functionalities presented by the Emmi framework. The converter runs checks on the model, such as for 
unsupported operations or model parameters. The model undergoes optimization and is exported as C 
code,  which consists  of  four  files:  two C implementation files  (one containing the  weights  and one 
containing the model) and two headers. When using the converted model, only a single header needs to be 
included.

The second component of the framework is known as the Emmi Core and represents the interface to the 
AI  functionalities  used  by  the  generated  models.  It  implements  all  supported  activation  functions 
(including approximations) and layers, such as dense, convolution or pooling. The Emmi Core is included 
by the C files of the converted model.

The implementations of the layers and activation functions utilize the methods of the numerical library,  
which represents  the  third  component,  namely vmath.  It  implements  all  mathematical  operations  for 
floating-point  and  the  quantized  data  types.  Like  the  layers  implemented  in  the  Emmi  Core,  the 
functionality implemented in vmath can be automatically vectorized by the RISC-V compiler. 

2.4.2 Features
Emmi  supports  various  layers,  activation  functions  and  model  architectures.  One  of  its  outstanding 
features is,  that each layer implemented in Emmi is optimized to be automatically vectorized by the  
compiler. This results in a faster execution time, while still being compatible to a wide range of platforms  
thanks to its C codebase. Emmi is tested with convolutional and residual networks and supports quantized 
and floating-point models. When converting a model using the EmmiTranslator, optimizations such as the 
removal of dropout layers from the inference function of the model are supported.

A complete overview of all supported layers, if the quantization is supported for those layers, and if the  
implemented  quantization  is  a  true  integer  quantization  is  given  in  Table  2.  All  listed  layers  are 

Figure 4: Emmi Components

Emmi

Emmi Core
(C Library)

Vmath
(C Library)

EmmiTranslator
(Model Converter and Python Tools)
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implemented for floating-point. Layers marked with a capital ‘X’ are implemented during the course of  
this thesis.

Table 2: Layers supported by Emmi

Layer Quantization Support True Integer Quantization

Dense ✓ ✓

X Convolution 1D ✓ ✓

Convolution 2D ✓ ✓

X Depth-wise Convolution 1D ✓ ✓

X Depth-wise Convolution 2D ✓ ✓

X Max Pooling 1D ✓ ✓

Max Pooling 2D ✓ ✓

X Average Pooling 1D ✓ ✓

Average Pooling 2D ✓ ✓

X Global Max Pooling 1D ✓ ✓

X Global Max Pooling 2D ✓ ✓

X Global Average Pooling 1D ✓ ✓

X Global Average Pooling 2D ✓ ✓

Flatten ✓

Add ✓ ✓

X Concatenation ✓

X Batch Normalization ✓

2.5 Machine Learning Operations
In machine learning models are represented as graphs, where the nodes represent the layers and the edges  
the dataflow. Layers are used to build the model and may contain a single or multiple operations in the  
form of a subgraph. [20]

This subsection introduces all operations added, and implemented to Emmi during this thesis. Already 
implemented operations are not covered. Detailed explanations for already implemented operations can 
be  found  in  “Development  of  a  Machine  Learning  Framework  for  Quantized  Neural  Networks  on 
Embedded RISC-V Systems” [7].

2.5.1 Convolutions

Convolution 1D

Discrete  convolutions  enable  the  extraction  of  features  from  input  data.  They  are  local  operations,  
meaning that they only consider selected groups of elements instead of the entire sequence at once. Each 
feature in the output sequence is computed based on the corresponding element in the original sequence  
and its neighboring elements. This approach determines the value of the resulting feature based on its 
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local context. The resulting sequence is formed progressively by moving the filter across the original  
sequence. [21, 22, 23]

A convolution involves a kernel (also called filter), which is slided across the input features, performing 
element-wise multiplication, and summing the results to produce a feature-map, which represents the 
output vector of the convolutional operation.

S (i)=I∗K=∑
n

N

I (i+n−⌊ N
2 ⌋)⋅K (n) (1)

Where  I is  the  feature-map of  the  input,   K is  the  kernel  and  S (i)  the  output  vector  at  position  i. 

Variable n is the index of the kernel, N is the number of elements in the kernel.

Within a neural network, the weights of the kernel are determined during the training. In a convolutional 
layer within a neural network, an additional bias can be incorporated.

S (i)=I∗K+b=b+∑
n

N

I (i+n−⌊ N
2 ⌋)⋅K (n) (2)

Where b is the bias of the kernel.

Especially  in  an  embedded system the  required number  of  multiplications  is  of  interest,  since  these 
operations often consume more than a  single  clock cycle.  The number of  multiplications per  output 
feature depends on the number of channels and the number of elements per kernel. In general, larger  
kernels require more multiplications.

Number of Muliplications per Output Feature=N∗c (3)

Where N is the number of Kernel elements per channel and c the number of channels.

Depth-wise Convolution 1D

Standard  convolutional  operations  use  the  same  kernel  for  all  input  channels,  while  the  depth-wise 
convolution involves a separate kernel  for  each channel  to preserve the separation of  channels.  This 
approach  allows  for  more  precise  feature  extraction  while  reducing  the  required  number  of  
multiplications, as can be concluded from formula (3) since channel c is always one when performing a 
depth-wise convolution.

Figure 6 compares the standard convolution with a depth-wise convolution using a sequential input with  
five elements and three channels. The kernel has a size of three elements. Notice that the kernel used for 
the standard convolution is  as deep as the number of  channels,  wheres the kernel  of  the depth-wise 
convolution is split into three kernels: one for each channel. Also the output of the depth-wise convolution 

Figure 5: Convolution for 1D inputs

x x x

∑

Input

Filter / Kernel

Output
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differs from the standard convolution: It  outputs a feature-map for each channel,  merged to a single 
tensor. [24]

Equation (4) shows how an element in the depth-wise convolution is calculated.

S (i , c)=I∗K (c)=∑
n

N

I (i+n−⌊ N
2 ⌋, c)⋅K (c)(n) (4)

Where S (i , c)  is the output tensor at position i in channel c and K (c)(n)  is the kernel of the channel c at 

position n.

The depth-wise convolution can also be applied to two-dimensional inputs:

S (i , j , c)=I∗K (c)=∑
m

M

∑
n

N

I (i+m−⌊ M
2 ⌋, j+n−⌊ N

2 ⌋, c)⋅K (c)(m ,n) (5)

Where  S (i , j , c)  is the output feature-map at position  (i , j)  in channel  c. Variables  m and  n index the 

current position of kernel K (c) , M and N are the elements per kernel dimension.

When using a bias, the equation (4) used for a one dimensional depth-wise convolution evolves to:

S (i , c)=I∗K (c)+b(c)=b(c)+∑
n

N

I (i+n−⌊ N
2 ⌋, c)⋅K (c)(n) (6)

And the equation for a two dimensional depth-wise convolutions (5) evolves to:

S (i , j , c)=I∗K (c)+b(c)=b(c)+∑
m

M

∑
n

N

I (i+m−⌊ M
2 ⌋, j+n−⌊ N

2 ⌋, c)⋅K (c)(m ,n) (7)

Notice that a bias for each channel is used.

2.5.2 Pooling Operations
Pooling is a local operation used to down-sample the input. Pooling involves applying a sliding window 
across the input, where a specific pooling function (such as max or average pooling) is applied to the 
values within each window, resulting in a single output value for each window. This technique not only 
helps in reducing the size of the input data but also enhances the model's ability to recognize features 

Figure 6: Comparison of standard and depth-wise 
convolution on a three channel input with five elements

Input

Kernel

Output

Standard Convolution Depth-wise Convolution
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regardless of their position within the input, thereby improving the model's robustness and generalization  
capabilities. [21, 22]

Average Pooling 1D

Average pooling calculates the average value of all elements within the pooling window. After calculating 
the average, the window is moved. Figure 7 shows a one dimensional average pooling with a window size 
of four and a stride of four, meaning, that the window is moved four elements at a time. [25]

Max Pooling 1D

Max  pooling  writes  the  highest  value  within  the  pooling  window  into  the  output  element.  After 
determining the highest value within the pooling window, the window is moved.  Figure 7 shows max 
pooling with a window size of four and a stride of four. [26]

Global Average Pooling 1D

Global pooling operations operate on the input of a channel instead of using a dedicated pooling window. 
In  global  average pooling 1D,  the  average of  the  complete  input  series  is  calculated for  each input  
channel. Figure 8 illustrates various global pooling operations. [27]

Global Max Pooling 1D

Global max pooling 1D determines the maximum value for each channel of a sequential  input.  It  is  
illustrated in Figure 8. [28]

Global Average Pooling 2D

Global average pooling 2D is the two dimensional equivalent of global average pooling 1D, used for 
input data with multiple channels. It calculates the average for each channel of the two dimensional input.  
[29]

Global Max Pooling 2D

Global max pooling 2D finds the highest value for each channel in a two dimensional input, such as an 
image with multiple color channels. [30]

Figure 7: 1D average and max pooling
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2.5.3 Padding and Dilation

Padding for 1D Data

When processing sequences with a sliding window, the edges of the sequence pose a challenge due to the  
lack of neighboring elements for the window to operate on. To mitigate this, two padding strategies are 
commonly employed: valid padding and same padding. 

Valid padding excludes the border elements from the operation, leading to a reduced output size. Same 
padding, in contrast, expands the input sequence by appending zeros to its edges. This method ensures 
that the output retains the same dimensions as the input. [31]

Figure 9 illustrates the application of same and valid padding with a three-element window. By adding 
zeros to the input sequence's edges as in the same padding case, the window's center (marked in red) 
aligns with the first element of the input.

Dilation for 1D Data

Dilation enlarges a kernel used in convolutions by inserting zeros between its elements. The right, one 
dimensional kernel in Figure 10 shows a dilation of two. This means a step-width of two is required to 
move from one of the kernels original elements to another. [23]

Figure 8: Global 1D and 2D poolings
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2.5.4 Concatenate
The concatenate operation merges n tensors into a single output tensor, provided they have the same 
shape  except  for  the  concatenation  axis.  Figure  11 illustrates  an  example  of  concatenation.  In  this 
example, three input tensors are concatenated on the second axis: the first tensor has 3×6 elements, the 
second has  3×7 elements,  and  the  third  has  3×2 elements.  The  resulting  tensor  has  3×15 elements. 
Concatenation is possible because all three tensors have the same number of elements on the first axis.  
[32]

2.5.5 Batch Normalization
Batch  normalization  is  a  technique  used  in  neural  networks  to  normalize  selected  feature-maps.  
Commonly batch normalization is used because it increases the training speed and reduces the chances for 
exploding gradients. It is inserted into the network as layer and uses the moving mean μ , the moving 
variance σ , the offset factor β , the scaling factor γ and the constant ϵ as parameters. [21]

The moving mean μ is the mean over time. It is initialized with zero.

μ=μ⋅m+mean(batch)⋅(1−m) (8)

Where mean(batch) calculates the mean of the current input batch and the momentum m characterizes 

the resistance of the moving variance to change. A typical value for m is 0.99 .

The moving variance σ is the variance over time. It is initialized with one.

σ=σ⋅m+var (batch)⋅(1−m) (9)

Where var (batch) calculates the variance of the current input batch. The momentum m is the same 

value as used to calculate the moving mean.

Both, the moving mean and the moving variance are updated each time the layer is called during training.

The parameters β and γ are  updated during the training using the gradient  descent  algorithm. The 
offset factor  β is initialized with 0,  γ  with 1.  ϵ  is used as small configurable constant and is 
added for numerical stability. TensorFlow uses an ϵ  of 0.001. [33, 34]

At inference time the batch normalization is calculated as shown in (10).

Figure 11: Concatenation illustration

Concatenate
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bn(batch)=γ⋅batch−μ

√σ+ϵ
+β (10)

Example

To demonstrate the batch normalization an example is given. Assume a vector (which represents a single  
sample of a batch) with 30 random elements in the range [-1.5, 2.5]. The histogram in Figure 12 shows its 
distribution.

A batch normalization is now applied to the vector using different parameters. At first with β=0 , γ=1
and ϵ=0 .

In Figure 13 it is visible that the values are now distributed somewhere around 0 instead of 0.5. In Figure
14 the use of the scaling parameter γ is demonstrated by setting it to γ=0.58 .

The values are now scaled into a much smaller range. To offset the features for an alignment in between  
[-1,1], β=0.05 is used.

By using the user parameter ϵ=0.001 the numerical stability of the batch normalization is improved. 
Since the variance is always positive, the value epsilon can be used to avoid a division by zero. The 
output  of  the  batch  normalization  when  using  γ=0.58 , β=0.05 and ϵ=0.001 is  shown  below (it 
should not be distinguishable from Figure 15 by a human eye).

Figure 13: Batch normalization applied with β=0 and ɣ=1

Figure 14: Batch normalization applied with β=0 and ɣ=0.58

Figure 12: Histogram of a vector with floating-point elements

Figure 15: Batch normalization applied with β=0.05 and ɣ=0.58
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The Python script demonstrating batch normalization on a vector can be found in the appendix under  
demos/batchnorm-demos.py.

Folding

The folding of a batch normalization layer  L consists of the removing of the batch normalization layer 
from  the  networks  graph  and  in  updating  the  models  parameters  to  keep  its  predictive  function 
unchanged.  It  is  performed  to  improve  the  networks  performance  at  inference  time.  The  folding  is 
executed after training the model.

Benoit  Jacob et  al.  propose in  their  2017 paper  “Quantization and Training of  Neural  Networks for 
Efficient Integer-Arithmetic-Only Inference” [35] an approach for folding a batch normalization layer 
into a neighboring expressive layer in backwards direction (see figure 17). These can be convolutional or 
dense layers. The batch normalization layer itself is completely removed. The approach can be denoted as 
shown in equation (11).

W foldB=γ
W

σ+ϵ
(11)

Where W foldB are  the  weights  with  folded  batch  normalization  parameters,  W the  tensor  of  original 

weights, γ the scaling factor, σ  the moving variance and ϵ for numerical stability.

With the BaN-OFF algorithm an improved folding was presented by Edouard Yvinec et al. in “To Fold or 
Not  to  Fold:  a  Necessary  and Sufficient  Condition on Batch-Normalization Layers  Folding” [36].  It 
defines the weights folding for biases in backwards direction and adds definitions to fold weights and 
biases in forward direction.  It proposes the folding of batch normalization layers even when no direct 
connection to an expressive layer exists.

The backwards folding of biases is done by:

b foldB=γ
b−μ
σ+ϵ

+β (12)

Where b foldB are the backwards folded biases, b the original biases, μ is the moving mean and β the offset.

The forward folding of weighs and biases is described in (13) and (14).

Figure 16: Batch normalization applied with β=0, ɣ=0.58 and ϵ=0.001

Figure 17: Directions in a sequential model
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W foldF=W foldB=γ
W

σ+ϵ
(13)

bfoldF=γ
μ

σ+ϵ
+β⋅W +b (14)

Note that the forward and backward folding of non-biased weights uses the same equation. To enable the 
folding even when no direct connection to an expressive layer exists, the BaN-OFF algorithm gathers all 
neighboring expressive layers in two sets: one for inputs and one for outputs of L, each starting with the 
batch  normalization  layer  L itself.  If  a  neighboring  non-expressive  layer  is  found,  all  neighboring 
expressive  layers  of  this  layer  are  added.  This  process  is  repeated  until  no  new  neighboring  non-
expressive layers are found. The batch normalization layer L is foldable, if at least one set:

1. Of gathered layers is not limited to L

2. All the leaves of the set are expressive layers [36]

If the set of input layers satisfies the second requirement, the gathered layers on the input side of L are 
updated using (11) and (12). The other ones negate the previous update using:

W=W
γ

(σ+ϵ ) (15)

b=b+γ
W μ
σ+ϵ

−β⋅W (16)

If not, the gathered layers on the input side of L are updated using (13) and (14) while other ones negate 
the previous update using:

W=W
γ

(σ+ϵ ) (17)

b=b
γ
(σ+ϵ )+γ

μ
σ+ϵ

−β (18)

To  fold  batch  normalization  layers  as  described  above,  the  Python  package  “tensorflow-batchnorm-
folding” can be used. It is developed by the main author of the paper [36]. Since it is limited to folding 
dense and convolutional 2D layers, and requires the no longer supported TensorFlow version 2.9, it must 
be updated to be usable with the EmmiTranslator, which only supports TensorFlow version 2.11 or higher. 
[37]

2.6 Quantized Neural Networks

2.6.1 Introducing Quantized Neural Networks
Neural networks commonly use floating-point values to represent inputs, weights, biases, feature-maps, 
and outputs. However, when deploying on integer-only hardware, these values can be handled by either  
using soft-float on the destination device or by converting the model to a quantized integer model. In  
addition to being beneficial for integer-only hardware, quantization can also improve the performance on 
floating-point  hardware  by  reducing  storage  requirements  and increasing  the  execution  speed of  the 
neural network.

Quantization is the process of converting continuous values into a discrete representation. It involves 
converting  arrays  of  floating-point  numbers  into  arrays  of  integer  values.  In  the  context  of  neural  
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networks, this process is applied to all inputs, weights, biases, and feature-maps. A size reduction of up to 
four times can be archived when converting a 32-bit floating-point network to an 8-bit integer network.

Quantization techniques for neural networks can be categorized: post training quantization techniques or 
techniques using quantization aware training,  static  or  dynamic quantization and true or  fake integer 
quantizations.

True Integer Quantization

True integer quantized neural networks perform all operations using integer values, meaning that floating-
point values are not used. To prevent overflows, techniques such as rescale operations must be employed  
since the multiplication of two integer values of bit-widths m and n results in an integer value of bit-width 
m  n⋅ . These rescale operations use a scaling factor to reduce the bit-width of the feature-maps. Figure 18 
illustrates a dense layer that employs true integer quantization and rescaling. [38]

Fake Integer Quantization

Fake quantized neural networks use floating-point arithmetic for some or all of their operations. Fake 
quantization involves storing weights as integers and converting them to floating-point values during 
inference, which can significantly slow down the process.  The primary purpose of fake quantization is to  
reduce the storage requirements of neural networks.  Figure 19 illustrates a dense layers inference using 
fake quantization with linear activation. [38]

Dynamic Quantization

When  utilizing  dynamic  quantization,  only  the  quantization  parameters  for  weights  and  biases  are 
established during model conversion. The quantization parameters for the feature-maps are established at  
runtime. The rescaling process dynamically determines the scaling factor used to rescale the feature-
maps. [38]

Figure 18: Inference using true integer quantization
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Figure 19: Inference using fake quantization
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Static Quantization

In statically quantized neural networks, all quantization parameters are fixed and already known after the 
model has been converted. This applies to weights and feature-maps. They are determined by analyzing a  
representative dataset  during the conversion phase,  which is  crucial  for  determining the quantization 
parameters for the network's feature-maps. This approach eliminates the need for dynamic rescaling, as a  
static rescaling factor is applied after each layer, improving the performance of the rescaling process  
applied during inferences. [38]

Post Training Quantization

Post training quantization is applied to a neural network after it has been trained. This converts its weights 
and  biases  from  floating-point  to  quantized  lower  precision  representations.  The  process  involves 
quantizing the model parameters after training, which may result in a slight decrease in accuracy due to 
the quantization errors not being accounted for during training. [38]

Quantization Aware Training

Quantization aware training involves applying quantization during the model's training process, rather 
than only quantizing afterwards, as it is the case with post training quantization. During quantized aware  
training, the quantization of the model is simulated, often by quantizing and dequantizing the model after  
each epoch. This adds the quantization error to the models weights, which enables the model to fit its  
weights  to  the  used  quantization.  Quantization  aware  training  is  considered  to  be  beneficial  to  the 
accuracy of a quantized neural network. [39] 

2.6.2 DYINQ
The Dynamic Inference Quantization is the post training quantization technique implemented in Emmi. It 
quantizes a neural network when converting a TensorFlow model to Emmi using the EmmiTranslator.  
DYINQ is a dynamic post training quantization, with support for true integer quantization. [7]

Quantizing Floats

DYINQ is designed to quantize vectors of floating-point values, using the same scale and zero offset.  
Single elements of float are quantized by multiplying them with a scale and then adding a zero offset that  
is used to align the quantized values in the range of a signed integer type. 

qi=round ( y i s+ z) (19)

Where yi is an element of the floating-point vector y and qi the resulting quantized value.

The scale s is calculated by dividing the quantization steps through the range of floating-point values.

s=round( Qsteps

max ( y)−min( y)) (20)

The zero offset z is calculated from the smallest possible value within the quantized space, the minimum 
value of the floating-point vector and the applied scale.

z=Qmin−min(Y ) s (21)

The number of quantization steps Qsteps depends in the chosen bit-width b of the integer value:
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Qsteps=Qmax−Qmin=(2b−1−1)−(−2b−1)=2b−1 (22)

Matrix Multiplication

The matrix multiplication within the quantized space using DYINQ is very similar to a standard matrix  
multiplication. It differs by subtracting the zero offsets and recalculating the scale in the second step.

q3
(i , j)=∑

k=1

N

(q1
(i , k )−z1)(q2

(k , j)−z2) (23)

Where q3
(ij) is an element in the resulting matrix at position i, j.

The output scale is calculated by multiplying the scales of the input matrices, the zero offset is set to zero.

s3=s1 s2 (24)

Elementwise Addition

When performing an elementwise addition, both input vectors Q1 and Q2 are brought to the same scale. 
Afterwards the elementwise addition is performed.

Q1 '=(Q1−z1)⋅s2 (25)

Q2 '=(Q2−z2)⋅s1 (26)

Q3=Q1 '+Q2 ' (27)

The scale of Q3 is determined by (24), the resulting zero offset is zero.

Elementwise Multiplication

Elementwise multiplication is performed by removing the zero offsets and multiplying the elements. The 
resulting zero offset is zero, the scale is determined by (24).

Q3=(Q1−z1)∘(Q2−z2) (28)

Where Q1 and Q2 are the factors and Q3 is the product.

Division

When performing an elementwise division (denoted as  ./ ), several steps are required. At first both 
input vectors are brought to the same scale.

Q1 '=(Q1−z1)⋅s2 (29)

Q2 '=(Q2−z2)⋅s1 (30)

Where Q1 is the dividend and Q2 the divisor.

In the next step the dividend is shifted until all bits of a register are used. This is done to prevent that all  
elements in quotient are zero since an integer multiplication is used. Afterwards the division is performed 
in (32) and the scale is updated in (33). The resulting zero offset is zero. On a system with p bits:

bshift=( p−1)−ceil ( log2(max (|Q1 '|))) (31)

Q3=shift L(Q1 ' , bshift)./Q2 ' (32)

s3=2bshift (33)
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Where bshift is the number of bits to shift, Q3 the quotient and s3 the quotients scale.

Rescale

The rescale operation implemented in DYNQ is used within a neural network to dynamically rescale 
feature-maps without providing a predetermined rescale factor. This factor is determined by the rescale 
method itself. 

To determine the rescale factor, at first the zero offset is corrected by calculating a new, optimal zero 
offset z2 and correcting the values within the matrix to adjust for the new zero offset.

Qmin=min(Q1)−z1 (34)

Qmax=max (Q1)−z1 (35)

z2=
Qmin−Qmax

2
−Qmin (36)

zadj=z2−z1

Q1 '=Q1+ zadj

Where Q1 is the matrix to rescale, z1 the zero offset of the matrix, Qmax  the maximum without zero 

offset, and Qmin the minimum without zero offset.  Q1 '  is the matrix to rescale with the new zero 

offset.

After correcting the zero offset, the absolute maximum of the tensor is calculated and the number of shifts 
required to match a given bit-width b is determined.

Qamax=max (|Q1 '|) (37)

bshift={ceil (log2(|Qamax+1|)−(b−1)) if log2(Qamax−1)≤b−1
0 else

(38)

In the last step the shift is performed on all elements of Q1 ' and its scale. The resulting matrix Q2 is 

within the constraints of bit-width b.

Q2=shift R(Q1 ' , bshift) (39)

s2=shift R(s1 , bshift) (40)

2.6.3 Runtime Accuracy Improvements
To enhance the precision of quantized networks using DYINQ, the bit-width of the quantization can be 
increased, as demonstrated in [7]. This concept of increasing the bit-width can be applied to the feature-
maps in between the networks layers. Rather than maintaining all feature-maps at the same bit-width as  
the quantization bit-width, a higher bit-width is chosen. The internal, higher bit-width has no impact on  
the size of the quantized network and can be adjusted after converting the network for the embedded AI  
framework.

One of the benefits of DYINQ is its support to use different bit-widths within a single operation. If a  
higher bit-width is used for the output feature-maps of a layer, the subsequent layer can process this  
higher bit-width as its input, even if the weights of the subsequent layer are stored in a different, lower 
bit-width.
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Details  on  the  implementation  of  the  feature-map  bit-width  can  be  found  in  section  4.4.3.  A brief 
overview of possible gains in accuracy is given in the next subsection.

Accuracy Gains when Increasing Feature-Map Bit-Widths

To analyze how the size of internal feature-maps affects accuracy, an example is  implemented using 
Python. The network used in this analysis has two dense layers, each with 32 neurons. The input vector 
has 32 elements. All weights and the input vector are randomly generated for 100 samples. Weights and  
biases are quantized with 8-bits.

Figure 20 shows that the average error decreases when increasing the bit-width of the internal feature-
maps. The largest decrease in error is between 8- and 9-bits with 24%. For 11-bit or higher, the rate of  
error reduction slows down. The increase of the average error when using 13-bits is caused by the small 
number of samples. Detailed error values are shown in Table 3.

Table 3: Average error when increasing internal feature-map bit-widths

Bit-width Average Error

8 41.17%

9 17.98%

10 9.03%

11 8.03%

12 7.63%

13 7.69%

14 7.5%

The  Python  script  demonstrating  the  internal  bit-width  can  be  found  in  the  appendix  under 
src/EmmiTranslator/demos/demo_internal_qbits.py.

Figure 20: Average error when increasing internal feature-map 
bit-widths
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2.6.4 Quantization against Soft-float
Quantization  has  many  disadvantages,  such  as  loss  of  accuracy,  especially  after  running  a  rescale 
operation,  which is  required after  each multiplication to  avoid overflow.  But  why quantize  at  all,  if  
floating-point support can be emulated with soft-float? The reason is the low performance of soft-float 
compared to integer-only quantization, as shown in Figure 21.

It  compares  the  performance  of  a  quantized  convolutional  neural  network  to  a  floating-point 
convolutional network. Both networks are executed on the same hardware, using the same input data and 
are both storing their data in 32-bit variables. The quantized network uses int32_t and the floating-point 
network  32-bit  float,  which  is  emulated  in  software.  It  is  visible  that  the  quantized  neural  network 
outperforms the floating-point network by factor 3.24. This is caused by the high overhead required by  
soft-float implementations.

The example comparing the performance can be found in the appendix under demos/emmi-LeNet5-demo. 

2.6.5 Fix-Point Quantization
An alternative to integer quantization is the fix-point quantization. During fix-point quantization a shared 
exponent is used between all values. This shared exponent is chosen based on the value distribution of a 
neural  network.  Figure  22 illustrates  an  8-bit  floating-point  number,  consisting of  a  sign-bit,  a  4-bit 
exponent and a 3-bit mantissa, as well as an 8-bit fixed-point number, utilizing a shared exponent. [40]

Currently fix-point quantization is neither supported by TensorFlow or PyTorch. For its support additional 
software, such as QPyTorch is required. Since this thesis deals with the embedded AI Framework Emmi,  
which focuses on integer quantization, fix-point quantization is not further investigated. [41, 42, 43]

Figure 21: LeNet-5 in Emmi using DYINQ and soft-float

Figure 22: Representation of floating-point and fixed-
point numbers
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3 Analysis and Design
This section defines the requirements for all software written within the scope of this thesis, analyzes  
architecture of the embedded AI Framework Emmi and presents the design decisions made to improve the 
framework.

3.1 Software Requirements
All software developed for the Emmi framework should meet the existing standards within the Emmi 
Framework, which can be divided into five categories:

TensorFlow Keras Compatibility

• All supported layers are compatible to their TensorFlow Keras equivalents

• Models with unsupported layers are rejected by the EmmiTranslator

Maintainability

• Software is divided into small modules that can be used by multiple components

• Code is clean, efficient and as simple as possible

Documentation

• C code is documented using doxygen compatible function descriptions [44]

• Python code is documented according to PEP 257 [45]

Testability

• Layers in the Emmi Core are testable using unit tests

• EmmiTranslator is testable in integration tests in combination with the EmmiCore and vmath

Embedded RISC-V

• The Emmi Core and its dependencies are executable on RISC-V based embedded systems

• Keep code size in mind: datatypes are as small as possible

• Layers Emmi Core are vectorizable for the RISC-V Zve32x extension using GCC’s automatic 
vectorizer, details on GCC’s automatic code vectorization are described in [46]
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3.2 Analysis of Existing Components
As already described in section  2.4.1 Emmi is separated into three different modules. This subsection 
provides an overview of all components and their parts. A more detailed description of all components 
and parts can be found in [7].

3.2.1 EmmiTranslator
The EmmiTranslator is separated into several namespaces consisting of different Python modules. The 
root  namespace  contains  the  model_decoder,  which  decodes  Keras  models  into  an  internal  model 
representation, which is then used by the  translator module to generate Emmi compatible models. The 
misc module contains small tools, for example for printing debug information. The header_generator and 
the code_generator are both responsible for generating C code.

The namespace layer_representation contains the modules responsible for the internal representation of 
the original Keras model. Tools contains additional functionalities to analyze neural networks. A Python 
implementation of the quantization technique DYINQ can be found in the namespace quantization, which 
also contains a module implementing the integer-only quantization by Benoit Jacob (abbreviated as JAQ) 
as well as a module containing buffers which can be used to store quantized tensors.

Unit tests for the modules  DYINQ and  JAQ can be found in the namespace  tests. Unit tests for other 
modules of the EmmiTranslator are not implemented.

Figure 23: Modules and namespaces of EmmiTranslator
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3.2.2 Emmi Core
The Emmi Core is separated into seven C modules. At first there are three modules dealing with the 
implemented activation functions. The module actf_flt implements activation functions for the type float, 
wheres  the module  actf_q32 implements  activation functions for  32-bit  quantized types.  Actf_factors 
stores the thresholds for hard activation functions.

Layers, such as the dense layer or the convolution are implemented in layers_flt and layers_q32. Small 
functionalities that are shared across different layers, for example the calculation of dilated tensors, are  
implemented in the tools module. Analysis contains static functions such as the mean square error.

3.2.3 Vmath
Vmath is a library for vector and matrix operations, supporting floating-point,  integer, and quantized  
types. Besides vector and matrix operations, it implements approximations for the exponential function 
and functionalities for comparing and printing tensors. Since vmath is beyond the scope of this thesis, it 
will not be examined further.

Figure 24: Modules of Emmi Core
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3.2.4 Opportunities for Improvements

Usage of lower bit data types

Quantized  neural  networks  are  consistently  stored  in  32-bit  types,  even  when  a  lower  bit-width  is  
sufficient, such as with 8-bit quantization. To support native 8- and 16-bit types for quantized neural  
networks,  it  is  necessary  to  add  support  for  the  already  by  vmath  supported  types  Tensor_q16  and 
Tensor_q8 in Emmi. Additionally, the EmmiTranslator must be updated to select the most appropriate 
data type, which will reduce the size of quantized networks.

Accuracy Improvements

The feature-maps in quantized networks currently use the same bit-width as the weights, which is not 
always necessary since DYINQ supports operands with varying bit-widths. By increasing the bit-width of 
the feature-maps, accuracy can be improved without increasing the model size, which was shown in  
section 2.6.3.

3.3 Design Decisions
During the design phase, general design decisions for the batch normalization are made. It is also decided 
how the framework is restructured, which parameters the new build system should support and where 
function prototypes for the new features are placed and integrated into the framework. 

3.3.1 Batch Normalization
Since a true quantized implementation of batch normalization at inference time would require a square 
root  function  within  the  quantized  space,  which  has  not  yet  been  developed,  a  true  quantized 
implementation  of  the  batch  normalization  will  not  be  realized  within  Emmi.  Instead  the  batch 
normalization folding will be implemented by improving and using the package “tf-batchnorm-fold”.

3.3.2 Project Structure
Currently, both Emmi and vmath store all their files in a single project directory without a clear separation 
of source, header, and documentation files. This lack of organization hinders the delivery of pre-built  
binaries  and headers  to  customers.  Implementing a  structured approach to  file  management,  such as 
separating source, header, and documentation files,  will  streamline the project structure and facilitate  
easier distribution of necessary components to customers.

Approach

The  project  structure  of  Emmi  and  vmath  are  restructured  to  separate  source  code,  headers,  
documentation, and build scripts. All source code is moved to the “src” directory, all public header files to 
the “include” directory and all documentation to the “doc” directory. The build scripts are kept alongside 
the readme in the repositories root directory.
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Table 4: New Emmi root project structure

Directory / Filename Description

build/ Contains  object  files  and  executable.  Directory  is  automatically 
generated when executing the makefile.

doc/ Emmi documentation in markdown.

include/ Public header files.

src/ C source code files.

Makefile Build rules and profiles

README.md Repository description

Table 5: New vmath project structure

Directory / Filename Description

Build/ Contains  object  files  and  executable.  Directory  is  automatically 
generated when executing the makefile.

include/ Public header files.

src/ C source code files.

Makefile Build rules and profiles

README.md Repository description

Unit Tests for both repositories are still maintained in separate repositories. These so called testbenches 
contain besides the unit tests also integration tests and benchmarks for accuracy and performance. How 
the testbenches include the repositores of vmath and Emmi is shown in Figure 26. The source code of the 
unit  and  integration  tests  are  stored  in  the  subdirectories  “e5aisuite-testbench/tests”  for  the  Emmi 
testbench and “vmath-tests/tests” for the vmath testbench. Note that the testbench of Emmi still uses the  
old name “e5AISuite” for compatibility reasons.

3.3.3 Build System
The Emmi Core, vmath and the testbenches each require individual makefiles for building for RISC-V 
and AMD64 platforms. These makefiles both employ their own build profiles, parameters and do not 
offer support for different GCC prefixes. A redesign of the build system to use a single makefile per 

Figure 26: Repository structure of the testbenches
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component for multiple platforms will reduce maintenance effort and simplify the build process. Support 
for different GCC prefixes and preconfigured targets is also added.

Parameters

To set the destination platform, the target parameter is introduced. Options are:

Table 6: Supported target platforms

Option Description

target=amd64 Compile for AMD64

target=emsa5 Compile for RISC-V, link the EMSA5 HAL, use 
the EMSA5 memory map and startup script

target=spike Compile for RISC-V, use spike memory map and 
startup script

To set the compiler optimizations and to control weather debug information should be included in the  
binary file, the profile parameter is introduced.

Table 7: Supported compilation profiles

Option Description

profile=default -O2, enable debug information

profile=debug -O0, enable debug information

profile=vector -O2, enable automatic vectorization (RISC-V only)

profile=release -O2
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3.3.4 EmmiTranslator
Within  the  EmmiTranslator  the  planned  changes  and  improvements  focus  on  the  Python  modules 
model_decoder and  translator.  Within the  model_decoder,  the in  Figure 27 red marked functions and 
variables will be added during the implementation.

The planned changes for the translator focus on the process when translating the model. The changes are 
described in section 4.3.3.

Figure 27: EmmiTranslator module model_decoder

model_decoder

+decode_shapes()
+decode_layer_io_name()
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+extract_layer_DephwiseConv2D()
+extract_layer_MaxPooling1D()
+extract_layer_MaxPooling2D()
+extract_layer_AvgPooling1D()
+extract_layer_AvgPooling2D()
+extract_layer_GlobalMaxPooling1D()
+extract_layer_GlobalMaxPooling2D()
+extract_layer_GlobalAveragePooling1D()
+extract_layer_GlobalAveragePooling2D()
+extract_layer_BatchNormalization()
+extract_layer_Concatenate()
+extract_layer_Dropout()
+extract_layer_Flatten()
+extract_layer_Add()
+add_empty_input_layer()
+decode_model()

default_actf_map:dict
exp_actf_map:dict
fexp_actf_map:dict
nsh_actf_map:dict
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3.3.5 Emmi Core
Most of the changes to the Emmi Framework are made within the Emmi Core. Here, support for new 
quantization types is added, as well as support for new layers.  Figure 28 shows modified modules in 
green. Newly implemented modules are shown in red.

For the layers_flt and layers_q32 modules and an overview of all implemented functions is presented in 
Figure 29. The modules layers_q08 and layers_q16 implement the same functionality as layers_q32, but 
with native 8- and 16-bit types.

Figure 28: New Emmi Core modules
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Figure 29: Emmi Core modules layers_flt and layers_q32
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+avgpool1d_q32()
+globalaveragepool1d_q32()
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+concatenate_q32()
+batchnormalization_q32()
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4 Implementation

4.1 Convolutional Operations

4.1.1 One-Dimensional Convolution
The one-dimensional convolution is the first operation implemented during the course of this thesis. The 
implementation supports parameters such as stride, dilation and padding, wheres the implemented zero 
padding does not add zeros at the borders of the feature-map. Instead the indexing is modified in a way  
that no expensive resize of the feature-map is required. 

The one-dimensional convolution is implemented for floating-point and for quantized neural networks. 
An overview of all major steps performed in the implementation is given below. Steps within [square 
brackets] are only performed when performing a quantized operation. Implementation details of each step 
may differ between the quantized and the floating-point implementation.

1. Check input shape

2. [Calculate output quantization parameters]

3. Calculate dilated kernel shape

4. Calculate output dimensions, start- and stop offset for indexing the input feature-map

5. Write bias into output tensor

6. Iterate over kernels, input channels and elements per channel

6.1. Check padding, calculate kernel indexing offsets

6.2. Iterate over current kernel

6.2.1. Apply current kernel element to current input feature

6.3. Write result for current input feature to output tensor

7. [Rescale operation]

8. Apply activation function

4.1.2 Depth-wise Convolution
The depth-wise convolution is implemented for one- and two-dimensional inputs with multiple channels. 
Both  implementations  support  parameters  stride,  dilation  and  padding.  The  major  difference  in  the 
implementation to the standard convolution is in the sixth step: Instead of iterating over input kernels 
(line 302 in Listing 1), input channels (line 303) and elements per channel (line 304), it is iterated over 
input channels (line 380), the channel specific kernels (line 381) and the elements per channel (line 384). 
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Listing 1: Compare implementation of depth-wise and standard convolution

Standard Convolution

302
303
304
305

306

for(int32_t q = 0; q < kernel->q; q++) {
for (int32_t p = 0; p < in->p; p++) {

size_t out_index = q*out->elements_mn;
for (int32_t n = -start_offset_n; n < (int32_t) 

                           (in->n - stop_offset_n); n+=stride) {
float kernel_out = 0;

                    ...

Depth-wise Convolution

380
381
382
383

384

for (int32_t p = 0; p < in->p; p++) {
for(int32_t q = 0; q < kernel->q; q++) {

size_t out_index = (p*kernel->q + q) * out->elements_mn;
for (int32_t n = -start_offset_n; n < (int32_t) 

                          (in->n - stop_offset_n); n+=stride) {
float kernel_out = 0;

                    ...

Excerpts from file "emmi/src/layers_q32.c"

4.1.3 Floating-Point and Quantized Implementation
Discrepancies between the floating-point and quantized implementations of convolutional operations are,  
as a result of a portable implementation, confined to the following steps (excerpt from section 4.1.1):

    2 [Calculate output quantization parameters]

    5. Write bias into output tensor

    6.2.1. Apply current kernel element to current input feature

    6.3 Write result of current input feature to output tensor

    7 [Rescale operation]

Calculate output quantization parameters

In the quantized implementation, the second step calculates the output quantization parameters. The zero  
offset is set to zero, since it is subtracted. The scale is calculated from the input scale, the scale of the 
kernel and the scale of the bias. An excerpt is shown in Listing 2.

Listing 2: Calculate quantization parameters in a 1D convolution

281
282

out->zero_offset = 0;
out->scale = in->scale * kernel->scale * bias->scale;

Excerpts from file "emmi/src/layers_q32.c"

Write bias into output tensor

When writing  the  bias  into  the  output  tensor  of  the  convolutional  operation,  the  quantized  and  the  
floating-point implementation differ slightly. In the quantized implementation the zero offset of the bias 
must be removed from the values, which are afterwards brought to the output scale of the convolution, as  
shown in Listing 3.
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Listing 3: Writing the bias into the ouput tensor of a 1D convolution

Floating-Point Implementation "emmi/src/layers_flt.c"

606
607
608
609
610

for (size_t p = 0; p < out->p; p++) {
for (size_t i = 0; i < out->elements_mn; i++) {

out->data[p*out->elements_mn + i] = bias->data[p];
}

}

Quantized Implementation "emmi/src/layers_q32.c"

295
296
297

298
299

for (size_t p = 0; p < out->p; p++) {
for (size_t i = 0; i < out->elements_mn; i++) {

out->data[p*out->elements_mn + i] = 
                (bias->data[p] - bias->zero_offset) * in->scale * kernel->scale;

}
}

Apply current kernel element to current input feature

The implementation of the 1D convolution is using the outer loops to iterate through the input tensor and 
the  inner  loop,  to  iterate  over  the  kernel  (which  is  shown  in  Listing  4).  When  performing  the 
multiplication  of  a  kernel  element  and  an  input  element,  the  quantized  implementation  requires  the 
removal of the zero offset before multiplying, similar as described in section 2.6.2.

Listing 4: Inner loop of a 1D convolution

Floating-Point Implementation "emmi/src/layers_flt.c"

617
...
629
630
631
632
633
634
635
636
637

float kernel_out = 0;
...
for (int32_t kn = kn_start; kn < kn_stop; kn++) {

int32_t ind = tensor_representative_index(kernel, 0, kn, p, q);
float a = kernel->data[ind];
int32_t i_idx_n = n + kn * dilation;
int32_t b_ind = tensor_representative_index(in, 0, i_idx_n, p, 0);
float b = in->data[b_ind];
kernel_out +=  a * b; 

}
out->data[out_index] += kernel_out;

Quantized Implementation "emmi/src/layers_q32.c"

306
...
318
319
320
321
322
323
324
325
326

int32_t kernel_out = 0;
...
for (int32_t kn = kn_start; kn < kn_stop; kn++) {

int32_t ind = TENSOR_REPRESENTATIVE_INDEX_MACRO(kernel, 0, kn, p, q);
float a = kernel->data[ind];
int32_t i_idx_n = n + kn * dilation;
int32_t b_ind = TENSOR_REPRESENTATIVE_INDEX_MACRO(in, 0, i_idx_n, p, 0);
float b = in->data[b_ind];
kernel_out +=  (a - kernel->zero_offset) * (b - in->zero_offset); 

}
out->data[out_index] += kernel_out * bias->scale;

Write result of current input feature to output tensor

After iterating though all kernel elements within the inner loop, the result is written on-top of the bias,  
which is already stored in the output tensor. Since an addition is performed, both parameters must use the 
same scale. For this, the kernel output is multiplied with the scale of the bias when using the quantized 
implementation, as shown in Listing 5.
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Listing 5: Write result to output tensor in a 1D convolution

Floating-Point Implementation "emmi/src/layers_flt.c"

637 out->data[out_index] += kernel_out;

Quantized Implementation "emmi/src/layers_q32.c"

326 out->data[out_index] += kernel_out * bias->scale;

Rescale operation

The rescale operation is only applied in the quantized implementation. It takes the tensor containing the 
output of the convolution and the bit-width to rescale to and rescales all elements in-place when passing  
the result tensor as input and output parameter.

Listing 6: Calling the rescale operation

331 tensor_rescale_q32_q32(out, out, nbits);

Excerpts from file "emmi/src/layers_q32.c"

4.2 One-Dimensional Pooling Operations

4.2.1 Max Pooling
The implementation of max pooling 1D supports parameters such as stride, dilation and padding. Instead 
of iterating through the elements of the kernel, the iteration is performed on all elements of the pooling  
scope,  with  the  aim  of  determining  the  maximum  value  of  the  current  scope.  Each  step  of  the 
implementation is outlined below:

1. Check input shape

2. [copy quantization parameters to output tensor]

3. Calculate dilated kernel shape

4. Calculate output dimensions and start- and stop offset for indexing the input feature-map

5. Iterate over input

5.1. Check padding, calculate pooling indexing offsets

5.1.1. Iterate though pooling scope

1. Find maximum value

5.2. Write maximum value into output tensor

4.2.2 Average Pooling
Average pooling 1D supports,  as  max pooling 1D,  the  parameters  stride,  dilation and padding.  It  is 
iterated though the elements within the pooling score to determine its  average.  Each step performed 
within the implementation is outlined below:

1. Check input shape

2. [copy quantization parameters to output tensor]

3. Calculate dilated kernel shape
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4. Calculate output dimensions and start- and stop offset for indexing the input feature-map

5. Iterate over input

5.2. Check padding, calculate pooling indexing offsets

5.3. Iterate through pooling scope

5.3.3. Accumulate values within pooling scope

5.4. Calculate average

5.5. Write average into output tensor

4.2.3 Global Max Pooling
Global max pooling iterates though all elements in each channel and determines the maxima per channel. 
It does not support any parameters, an overview of the implemented steps is presented below:

1. Check input shape

2. [copy quantization parameters to output tensor]

3. Iterate through channels

3.1. Iterate through all elements within a channel

3.1.1. Find maximum value

3.2. Write maximum value into output tensor

4.2.4 Global Average Pooling
The implementation of global average pooling only differs in a few steps from the implementation of  
global max pooling. As global max pooling, global average pooling does not support any parameters.

1. Check input shape

2. [copy quantization parameters to output tensor]

3. Iterate through channels

3.2. Accumulate through all elements within a channel

3.3. Calculate average of a channel

3.4. Write average value into output tensor

4.2.5 Floating-Point and Quantized Implementation
The floating-point  and quantized implementations  for  the  pooling operations  do not  differ  much.  In  
quantized  pooling  no  weights  are  involved,  meaning  only  a  single  scale  is  used  within  the  whole 
operation. This enables the quantized values to be handled in the same way as float values. No additional  
rescale operations are required.
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4.3 Batch Normalization
For the batch normalization several implementations are provided. At first a layer using floating-point  
values  is  implemented  in  Emmi  using  C  code.  Afterwards  this  implementation  is  reused  in  an 
implementation for fake quantization. Meaning a layer that takes quantized values, performs the batch 
normalization as floating-point, and quantizes the result. 

In the next step the support for folding the batch normalization parameters is added to Emmi. For this the  
Python package “tensorflow-batchnorm-folding” is analyzed and improved. Afterwards the package is 
added  as  dependency  of  the  EmmiTranslator,  which  is  modified  to  use  the  package  to  fold  batch 
normalization layers into the current network.

4.3.1 Floating-Point Implementation
Batch normalization is implemented for all axes supported by emmi. The axis used is passed by the caller  
to  the  batch  normalization  function,  which  uses  a  switch  case  statement  to  perform  the  batch 
normalization on the selected axis.

An excerpt of the batch normalization function is shown in Listing 7. It shows how batch normalization is 
performed on axis m: It is iterated through all elements of the input tensor and performed using equation 
(10).

Listing 7: Batch normalization on axis m

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080

1081
1082
1083
1084

for (int q = 0; q < in->q; q++) {
  for (int p = 0; p < in->p; p++) {
    for (size_t m = 0; m < in->m; m++) {
      for (size_t n = 0; n < in->n; n++) {
        // Input and output have the same index.
        size_t i_in = tensor_representative_index(in, m, n, p, q);
  
        // Determine index for BN parameters, all BN parameters have the same
        // shape -> only a single index for all BN parameters is required.
        size_t i_bn_params = tensor_representative_index(moving_mean,m,0,0,0);

        // Calculate BN for a single element.
        out->data[i_in] = gamma->data[i_bn_params] * ((in->data[i_in] -
            moving_mean->data[i_bn_params])
            / sqrt(moving_variance->data[i_bn_params] + epsilon)) + 
               beta->data[i_bn_params];
      }
    }
  }
}

Excerpt from file "emmi/src/layers_flt.c"
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4.3.2 Fake Quantized Implementation
The implemented batch normalization for quantized neural networks is called with a quantized input  
tensor and floating-point batch normalization parameters. The input tensor is dequantized and passed to  
the floating-point implementation. Afterwards the output is quantized. The implementation is shown in 
Listing 8.

Listing 8: Fake quantized implementation of batch normalization

880

881
882
883
884
885
886
887

888
889
890

int32_t batchnormalization_q32(
  Tensor_q32 *in, Tensor_q32 *out, const Tensor_flt *moving_mean,
  const Tensor_flt *moving_variance, const Tensor_flt *beta, 
  const Tensor_flt *gamma, const float epsilon, const enum Axis axis,
  const uint8_t nbits) {
    float f_data[in->elements_mnpq];
    Tensor_flt f;
    f.type = FLOAT;
    f.data = f_data;
    f.elements_max = in->elements_mnpq;
    int32_t ret = tensor_dequant_q32(in, &f);
    ret |= batchnormalization_flt(
           &f, &f, moving_mean, moving_variance, beta, gamma, epsilon, axis);
    ret |= tensor_quantization_q32(&f, false, 0, false, 0, nbits, out);
    return ret;
}

Excerpts from file "emmi/src/layers_q32.c"

The implemented approach has many drawbacks, particularly when running on integer-only devices. The 
use  of  soft-float  to  dequantize  to  floats  on  such  devices  results  in  a  reduction  of  performance. 
Furthermore, the performance is negatively affected by first dequantizing and then quantizing the feature-
maps.

A quantized implementation of the batch normalization is not employed, as the floating-point and the fake 
quantized implementation of batch normalization within Emmi only serve as a fallback in the event that  
folding during the model conversion is not possible.

4.3.3 Folding
To add support for batch normalization folding the Python Package “tensorflow-batchnorm-folding” is 
used. Its feature set and code base is analyzed, improved and integrated into the EmmiTranslator in the 
form of a Python dependency.

Analyzing the Python Package

At first the feature set and compatibility of the package are analyzed. It requires the no longer supported 
TensorFlow version 2.9 and does not provide support for newer versions. As result the EmmiTranslator is  
not  compatible,  since it  requires  TensorFlow 2.11 or  newer.  On the featureside the folding of  batch 
normalization layers into dense and convolutional 2D is supported,  but limited to functional models. 
TensorFlows sequential model architecture is not supported. 

At  last,  the  package  structure  is  analyzed:  Directory  src/batch_normalization_folding contains  two 
subdirectories, one containing the implementation, consisting of the decoding of the input TensorFlow 
model,  the  batch  normalization  folding  and the  rebuilding  of  the  TensorFlow model.  The  other  one 
containing the required functionalities  for  writing unit  tests  for  comparing models with folded batch 
normalization layers with the original ones. The unit tests itself are implemented in a file called folder.py 
located in the  src/batch_normalization_folding directory of the package. They test the folding of batch 
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normalization layers on several applications distributed with TensorFlow. The process of testing a model 
is illustrated in an activity diagram shown in Figure 30.

Adding Compatibility to TensorFlow 3.11

A  single  change  is  required  to  add  compatibility  with  TensorFlow  3.11.  The  network  decoding 
functionality  is  updated  to  use  the  layer.get_input_shape_at() function  instead  of  the  deprecated 
layer.input.shape property. 

Add Support for Sequential Models

To support sequential models, the decoding of the original TensorFlow model is updated. As sequential  
TensorFlow models do not have a dedicated input layer, the search for input layers within the graph fails.  
To fix this, the model type is checked. If a sequential model is found, the first layer is marked as an input  
layer, allowing the model decoder to continue.

Add Support for 1D Convolutions

To  add  support  for  1D  convolutions,  several  files  are  modified.  The  file 
src/batch_normalization_folding/TensorFlow/calculus.py contains  all  implementations  required  for  the 
folding of batch normalization layers into dense and 2D convolution layers. Added are the functions 
fold_root_backward_conv1D() and fold_root_forward_conv1D(), which perform the batch normalization 
folding as described by equations (11) and (13) for one dimensional convolutional layers.

Figure 30: Process of testing a folded model
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Also modified is  the file  src/batch_normalization_folding/TensorFlow/add_biases.py.  Its  functions are 
used  when  rebuilding  the  network  graph.  Implemented  is  the  function  add_conv1D_bias(),  which 
generates a new one dimensional, convolutional layer with the given parameters.

The  file  src/batch_normalization_folding/TensorFlow/to_fold_or_not_to_fold.py implements  the 
functionality to decide weather a layer is folded or not. Here the one dimensional convolution is added to 
the list of supported operations.

Miscellaneous Improvements

Besides the improvements required for a compatibility to the EmmiTranslator, four minor improvements  
are  implemented  into  the  Python  package  tensorflow-batchnorm-folding.  In  a  first  step,  batch 
normalization layers that have not been folded are counted and presented to the end user when enabling 
the verbosity of the package. Subsequently, the evaluation of the unit tests is improved. Now, instead of 
displaying a tick for each executed unit test, a pass or fail symbol is displayed depending on the actual  
result of the unit test. Also, an additional folding algorithm is implemented besides BaN-OFF. The folding 
algorithm, titled ‘simple’ only folds the batch normalization if it is foldable into a directly neighboring 
layer. At last, the projects metadata is updated as described in PEP 621. [47]

Fork and Merge Request

All changes made to the Python package tensorflow-batchnorm-folding are committed to a fork of the  
main project. Out of this fork, a merge request to the main project is created. It includes all changes and 
improvements and was integrated by the projects maintainer into version 1.0.9 of the package. [48]

Integration into EmmiTranslator

In the EmmiTranslator Python package,  tensorflow-batchnorm-folding is added as dependency as shown 
in Listing 9.

Listing 9: Dependencies of Python package EmmiTranslator

19
20
21
22
23
24
25
26

dependencies = [
  'numpy >= 1.24',
  'Pillow >= 9.4',
  'matplotlib >= 3.6.3',
  'tensorflow >= 2.11',
  'tensorflow-batchnorm-folding >= 1.0.9',
  'pyserial >= 3.5',
]

Excerpt of "EmmiTranslator/pyproject.toml"

Within the translate_model() function, which is called by callers who want to translate a TensorFlow 
model  for  the  embedded  AI  framework  Emmi,  the  batch  normalization  folding  is  performed before 
decoding and converting the TensorFlow model for Emmi. An overview of the complete process when 
calling translate_model() is given in Figure 31.

The function translate_model() starts by checking if the output path exists and raises an exception if it 
does not. In the second step, the ctype, which is a string telling the converter the datatype to use when 
storing the weights of the model, is decoded. The global verbosity of the translator is configured and the 
desired model name is made compatible with the C code naming guidelines. It is checked if a TensorFlow 
model is passed, and if batch normalization folding should be enabled. The following check for the batch-
normaization-package is good practice and hints users that are using the EmmiTranslator without a proper 
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installation by their package manager to install tensorflow-batchnorm-folding, how this is done in Python 
is shown in Listing 10. Afterwards the model is folded, decoded and converted to Emmi.

Figure 31: Activity diagram of function translate_model()
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Listing 10: Check for tensorflow-batch-normalization package

120
121
122
123
124

125
126
127

128
129
130
131

if (batchnorm_fold==True):
  try:
    # Ensure to install batch_normalization_folding from 
    # https://gitlab.com/paspf/batch-normalization-folding
    from batch_normalization_folding.folder import
        fold_batchnormalization_layers
  except ModuleNotFoundError:
    print_line(0)
    print("Install batch_normalization_folding by using pip install 
                batch-normalization-folding"
          "For the documentation of this package, visit:"
          "https://gitlab.com/edouardyvinec/batch-normalization-folding")
    print_line(0)
    exit(1)

Excerpt of "EmmiTranslator/EmmiTranslator/translator.py"

4.4 General Improvements
Besides the addition of new features and functionality, general improvements to the projects build system, 
support for additional datatypes and a callback functionality are added to the embedded AI framework.

4.4.1 Build System
The makefiles of Emmi, vmath and the testbenches are completely rewritten to fulfill the functionality  
described in 3.3.3. At first support for building for specific targets is added. Later on, build profiles and  
the support for custom gcc prefixes is added. 

4.4.2 Native 8- and 16-bit type support
Since  its  initial  development,  Emmi  has  only  supported  the  structures  Tensor_flt  (for  floating-point 
tensors) and Tensor_q32 (for quantized tensors, where int32_t is used to store their elements), which 
means that when 8-bit quantization is used, each weight and bias is stored in a 32-bit type, leaving 24-bits  
unused.  To  correct  this,  support  for  processing  quantized  data  from  Tensor_q8  and  Tensor_q16  is  
implemented in Emmi by adding the functionality which is already present for Tensor_q32 also for the  
types Tensor_q8 and Tensor_q16. As described in 3.3.5 the implementations of all layer functionality for 
Tensor_q8  and  Tensor_q16  are  stored  within  the  Emmi  Core  directories  src/layers_q08.c and 
src/layers_q16.c.

To generate models for Tensor_q8 and Tensor_q16, the EmmiTranslator is modified. The desired type is 
selected  using  the  "ctype"  parameter,  which  is  passed  to  the  EmmiTranslator  when  the  model  is  
converted. By default, the parameter "ctype" is set to "auto". This means, that the type used is selected  
automatically based on the converter and quantization settings.

4.4.3 Feature-Map Bit-width
A method to improve the accuracy of the network is to increase the bit-width of the feature-maps, as 
shown  in  section  2.6.3.  To  implement  this  feature,  the  EmmiTranslator  and  the  Emmi  C  code  are 
modified.

The  C code  is  modified  so  that  each  quantized  layer  and activation  function  requires  an  additional  
parameter: the bit-width of the output feature-map. Instead of rescaling the output feature-map to the bit-
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width of the layer weights, it is rescaled to the bit-width passed as a parameter. Since the EmmiTranslator 
generates the calls to the layers and activation functions, it is modified to insert the configured bit-width 
as a new parameter. Since the DYINQ quantization technique can handle inputs and outputs with different 
bit widths, no additional modifications in the program logic are required.

4.4.4 Shared Bias Quantization
Another feature added to Emmi and the EmmiTranslator is the shared bias quantization. When enabled 
during model translation, the same quantization is selected for a layer's weights and biases. This means  
that the scale and zero offset of a layer's weights and biases are the same. At inference time, this results in  
a  small  performance  improvement,  as  only  two multiplications  are  required  to  bring  a  layer's  input  
feature-maps, weights and biases to the same scale, rather than three.

4.4.5 Activation Function Selection
Within Emmi some activation functions, such as the sigmoid function, are implemented several times. 
One time using the exponential function from the c standard library, one time using an approximation of  
the  exponential  function,  and  one  time  using  a  hard,  step-wise  defined  function.  Currently  the 
EmmiTranslator always inserts the default implementation of the activation function when translating the 
model.  When another  implementation shall  be used,  the generated C code must  be edited.  The new 
implementation  introduces  customizable  maps  of  activation  functions.  They  are  passed  to  the 
EmmiTranslator and map activation functions to the actual  Emmi implementation.  Table 8 shows all 
preconfigured mappings.

Table 8: Preconfigured activation function mappings

Function Map Name

default_actf_map exp_actf_map fexp_actf_map nsh_actf_map

Description Default function 
map applied by the 
EmmiTranslator.

Utilizes c standard 
library exponential 

function

Utilizes an 
approximated 
exponential 

function

Utilizes step-wise 
defined sigmoid 

function.

linear linear linear linear linear

Relu relu relu relu relu

sigmoid sigmoid_fexp32 sigmoid_exp sigmoid_fexp32 nsh_sigmoid

hard_sigmoid hard_sigmoid_tf hard_sigmoid_tf hard_sigmoid_tf hard_sigmoid_tf

softmax softmax_fexp32 softmax_exp softmax_fexp32 softmax_fexp32

tanh tanh_fexp32 tanh_exp tanh_fexp32 tanh_fexp32

swish swish_fexp32 swish_exp swish_fexp32 swish_fexp32

elu elu_fexp32 elu_exp elu_fexp32 elu_fexp32

selu selu_fexp32 selu_exp selu_fexp32 selu_fexp32

For more details on the implemented functions, see [56]. To customize a preconfigured mapping, the 
desired entries in the map are changed before passing it to the translator as shown in Listing 11.
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Listing 11: Customize a function map

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

from Emmi.translator import translate_model
from Emmi.model_decoder_tf import ModelDecoderTF

# Load default mapping.
actf_map = ModelDecoderTF.default_actf_map.copy()

# Change mapping of softmax function.
actf_map["softmax"] = "softmax_exp"

translate_model(model=a_TF_model, 
                dest_path="model_export", 
                model_name="an_emmi_model", 
                qbits=8,
                qbits_intern=12,
                ctype="int8_t", 
                actf_mapping=actf_map,
                batchnorm_fold=True,
                shared_bias_quantization=True)

4.4.6 Callbacks and Debug Information
To enable developers to easily access the feature-maps within a model, to analyze the required runtime 
per layer (when executing on the EMSA5), or to place callback functions, which are executed after each 
layer, the EmmiTranslator model generation is improved.

Debug Information: Feature-Maps

When translating a model with the Option:

generate_debug_information='values'

The EmmiTranslator  inserts  prints  of  the feature-maps after  each layer  in  the converted model.  The 
automatically generated C code that prints the feature-map of a layer is shown in Listing 12. Not only the 
feature-map itself is printed, but also the name of the layer that outputs the feature-map.

Listing 12: Example for automatically generated C code printing feature-maps

1
2
3

maxpool2d_flt(&tmp_in, &tmp_out, 2, 2, 2, 2, 1, 1, valid_padding);
printf("Layer name: max_pooling2d | outputs:\n");
vmath_print(&tmp_out);

Debugging Information: Runtime Markers

Another option added to the EmmiTranslator is the insertion of runtime markers. These markers indicate 
the start and the end of the execution of a layer. They are printed to the outstream of the target system,  
and are analyzed by the Python module  EmmiTranslator.tools.runtimeAnalysis.RuntimeAnalysis.  When 
executing this module, it listens to a given COM port, and measures the time between the markers. When  
receiving the last marker, indicating the end of the models inference, a bar graph as shown in Figure 32 is 
generated. It shows the runtime time per layer.
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After converting a model with the option:

generate_debug_information='runtime_markers'

And running it on the target system, the runtime analysis is started as shown in Listing 13.

Listing 13: Using the Emmi Runtime Analysis

1
2
3
4
5
6

from EmmiTranslator.tools.runtimeAnalysis import RuntimeAnalysis

h = RuntimeAnalysis(timeout=20,
                    serial_port="com6",
                    figure_path="figures/out.svg")
h.start()

The Python module for analyzing the runtime per layer in a model can be found in the appendix under 
src/EmmiTranslator/tools/runtimeAnalysis.py. 

Callbacks

The last option added to the EmmiTranslator is the placement of callback functions after each executed  
layer:

generate_debug_information='callback'

This enables the developer to pass a callback function, when calling the inference function of the model.  
On each callback, the ID of the executed layer, the name of the layer, the layers output feature-map, the 
layers return value and user-defined parameters are passed to the callee. 

Figure 32: Bar chart created with the EmmiTranslator runtime 
tool
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5 Evaluation
This  chapter  describes  all  testing  and  evaluation  steps  performed  to  verify  and  evaluate  the 
implementations. It starts by presenting a brief overview of the implemented unit and integration tests, the  
used test scenarios and benchmarks. At the end it is presented how to executed the Emmi testbench in 
Spike, a RISC-V simulator. 

5.1 Unit Tests
Unit tests are developed and implemented for all layers added to Emmi in this thesis (see  Table 2). To 
write  and  integrate  unit  tests  into  the  testbench,  random  tensors  are  generated  and  applied  to  the 
corresponding TensorFlow implementation. From these results the unit tests for Emmi are generated. The 
steps involved in generating a unit test are outlined below:

1. Define test case

2. Implement reference generation using TensorFlow

3. Generate unit test for Emmi using test case definitions and references from TensorFlow

During the course of this thesis, 555 unit tests were implemented, bringing the total number of unit tests 
implemented for the Emmi core to 806. All scripts that generate unit tests can be found in the appendix  
under src/e5aisuite-testbench/scripts. The actual unit test implementations can be found in src/e5aisuite-
testbench/e5aisuite-testbench/tests.

5.2 Integration Tests
In addition to unit testing, integration testing is performed by translating models into Emmi, executing 
them within Emmi, and comparing the results of inference between TensorFlow and Emmi. The steps 
involved in implementing an integration test are outlined below:

1. Define test case

2. Generate data for test case

3. Train TensorFlow model

4. Run inferences using trained model and record outputs

5. Convert TensorFlow model to Emmi using EmmiTranslator

6. Write test cases running inferences in Emmi and comparing the outputs with the recorded results

In the course of this thesis, several integration tests are implemented for ten models, resulting in a total of  
657 integration tests for Emmi. The models developed for the integration tests used in this thesis are 
described in section 5.2.1.

5.2.1 Models for Integration Tests
The integration tests developed during this thesis are focused on testing batch normalization layers (with 
and without folding), one-dimensional convolutions and poolings. 
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Scenario and Dataset

All integration tests are trained supervised using the same dataset.  This dataset contains six different 
waveforms, including two sine waves with different periods, absolute sine, triangle, sawtooth, and pulse.  
The networks are tasked with detecting the form of the wave when provided with 35 input samples. 

Figure 33 presents an excerpt of all signals in the dataset. The Python script generating the dataset can be  
found in the appendix under e5aisuite-testbench/scripts/models/timeseries-datagen.py.

Models

Overall ten models, differing in their architecture, are implemented, trained and exported to Emmi for the 
use as integration test. An overview of all implemented models and the layers utilized within the models  
is presented in Table 9.

Table 9: Overview of models used in integration tests

Model Name Used Layers

network-timeseries-conv1D-category-concat Conv1d, Concatenate, Flatten, Dense

network-timeseries-conv1D-category-fun Conv1d, Flatten, Dense

network-timeseries-conv1D-category-fun-bn Conv1d, BatchNorm, Flatten, Dense

network-timeseries-conv1D-category Conv1d, Flatten, Dense

network-timeseries-conv1D-category-gap Conv1d,  MaxPool1d,  GlobalAvgPool1d, 
Flatten, Dense

network-timeseries-conv1D-category-gmp Conv1d,  MaxPool1d,  GlobalMaxPool1d, 
Flatten, Dense

network-timeseries-conv1D-category-maxpool Conv1d, MaxPool1d, Flatten, Dense

network-timeseries-conv1D-category-maxpool-causal Conv1d, MaxPool1d, Flatten, Dense

network-timeseries-conv1D-category-avgpool Conv1d, AvgPool1d, Flatten, Dense

network-timeseries-depthwiseconv1d-category DepthwiseConv1d. Conv1d, Flatten, Dense

Figure 33: Signals within the timeseries dataset
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The TensorFlow Keras implementation of all models listed in  Table 9 can be found in the appendix in 
e5aisuite-testbench\scripts\models.

Test Cases

For each model, fifteen inferences are run and compared to the reference data. To export the reference 
data to the Emmi Testbench a Python script is written.

The  Python  script  can  be  found  in  the  appendix  in  e5aisuite-testbench/scripts/models/timeseries-
cexport.py.

5.3 Benchmarks

5.3.1 Network Size and Execution Speed
To compare network size and execution speed when using different data types for weights and biases, a  
LeNet-5 is quantized and deployed to the EMSA5. The network size is read out of the EmmiTranslator,  
and  the  performance  is  measured  by  counting  the  number  of  clock  cycles  elapsed  within  a  single 
prediction.

Table 10 shows the results. The speedup from int32_t to int8_t is 5%, while the reduction in required 
memory is 65%. Note that the size reduction from the model stored in 32-bit values to a model stored in  
8-bit values is not a factor of four. This is because memory is also allocated for the internal feature-maps,  
which are always 32-bit.

Table 10: Network size and execution speed when using different datatypes for weights and biases

Quantization Datatype Size (Kilo Bytes) Size (%) Cycles Speedup

None / Float float 284.46KB 100% 296399159 0.12

8-bit int32_t 284.46KB 100% 34284604 1.0

8-bit int16_t 161.04KB 57% 33231619 1.03

8-bit int8_t 99.32KB 35% 32659232 1.05

The example containing the code for the execution of the benchmark can be found in the appendix under 
demos/emmi-LeNet5-demo.

Figure 34: Layers of a LeNet-5
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5.3.2 Batch Normalization Folding
The effect  of batch normalization folding on the performance is tested using the model displayed in 
Figure  35.  When  activating  batch  normalization  folding  within  the  EmmiTranslator,  the  two  Batch 
Normalization layers are folded in forward direction.

Figure 36 compares the models performance when using soft-float on the EMSA5. It is visible that the  
performance when using batch normalization folding increases by 22%.

Figure 37 compares the models performances when using 8-bit quantization. When folding the models 
batch normalization layers, the performance increases by 33%.

The example containing the code for the execution of the benchmark can be found in the appendix under 
demos/emmi-bn-fold-demo.

Figure 35: Layers of the model network-timeseries-conv1D-category-fun-bn
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Figure 36: Speedup of a model using batch normalization 
folding (soft-float)

Figure 37: Speedup of a model using batch normalization 
folding (8-bit DYINQ)
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5.3.3 MLPerf Tiny Image Classification
To evaluate the accuracy of a network using different internal feature map bit-widths, the MLPerf Tiny  
image classification benchmark is chosen. The goal of MLPerf Tiny is to "provide a representative set of 
deep neural networks and benchmarking code to compare performance between embedded devices" [49]. 
MLPerf Tiny can be used to evaluate devices in terms of accuracy, performance and efficiency. As the 
EMSA5 is implemented as an IP core on an FPGA board, only the accuracy benchmark is run, as all 
devices listed in the MLPerf Tiny database are in silicon. [50]

Table 11 lists the results of the first 1000 samples of the MLPerf Tiny Image Classification Benchmark, 
executed in Emmi on the EMSA5. It is visible that the accuracy increases with the bit-width. It also 
reaches the 85% required to participate in the MLPerf Tiny Image Classification Benchmark.

Table 11: Accuracy of different feature map bit-widths when running the MLPerf Tiny Image 
Classification benchmark in Emmi

Quantization bit-width Feature map bit-width Accuracy

8-bit 13-bit 88.1%

8-bit 12-bit 87.0%

8-bit 10-bit 86.2%

8-bit 8-bit 78.3%

5.4 Vectorized Testbench in Spike
To execute all  unit  and integration tests with the RISC-V Vector Extension Zve32x, a compiler with  
support for automatic vectorization and an ISA simulator with support for vector instructions is required.  
As  compiler  GCC14  is  used,  and  as  simulator  Spike.  Since  Spike  is  only  compatible  with  Linux 
platforms, both must be build for Linux.

5.4.1 Setup

GCC with Auto-Vector Support

At first the GNU C Compiler 14 is build on the destination platform. The build is configured for ilp32 (no  
hardware floating-point unit) and the use of multilib, which generates two different versions of the C 
standard library: One for platforms without vector support, and one for platforms with vector support.

git clone https://github.com/riscv-collab/riscv-gnu-toolchain.git –recursive
cd riscv-gnu-toolchain
./configure --prefix=/opt/riscv-gnu-toolchain-14 --with-arch=rv32gc --with-
abi=ilp32 –with-multilib-generator="rv32imc-ilp32--;rv32gcv-ilp32--"
make

Spike

The build process of  spike,  the RISC-V simulator,  is  uncomplicated.  After  cloning the sources from 
GitHub, the prefix of the installed RISC-V compiler is set and the build process is started. When running  
‘make install’, the Spike binaries are copied into the directory of the RISC-V toolchain.

git clone https://github.com/riscv-software-src/riscv-isa-sim.git --recursive
cd riscv-isa-sim
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mkdir build
cd build
../configure --prefix=/opt/riscv-gnu-toolchain-14
make
make install

PK

PK is a proxy kernel for spike. It allows the use of I/O functionality within spike by proxying I/O system 
related calls to the host computer. The build of PK must be compatible with the newlib built during the 
RISC-V GCC build. As the Emmi testbench is to be run with the vector extension, PK is configured for 
the vector extension. [51]

git clone https://github.com/riscv-software-src/riscv-pk.git --recursive
cd riscv-pk
mkdir build
cd build
../configure --prefix=/opt/riscv-gnu-toolchain-14 --host=riscv32-unknown-elf –with-
arch=rv32imcv_zicsr_zifencei

Because PK is built with vector extension and -O2, loops accessing I/O components may be vectorized,  
causing the system to fail. To prevent this, the compiler optimization is set to -O0 by manually editing the  
generated makefile. Then PK is built and installed.

make
make install

5.4.2 Running Testbench
To run the vectorized testbench, the testbench is compiled and afterwards spike is started with the options:

spike --isa=rv32imfcv_zicsr_zifencei --varch=vlen:128,elen:32 $RISCV/riscv32-
unknown-elf/bin/pk build/riscv32-unknown-elf-gcc_spike/emmi-testbench.elf

This will enable the full set of RISC-V vector extensions (Zve32x as standalone is not supported by 
Spike), set the size of the vector registers, enable the proxy kernel and load the compiled binary, which is  
run immediately after spike is started.
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6 Embedded AI Application
This chapter presents an embedded AI application developed at the Fraunhofer IPMS. It introduces the  
scenario and the hardware used, as well as the tasks performed within the scope of this thesis. 

6.1 Introduction
Conveyors are automated mechanical devices, consisting of belts stretched over pulleys. They facilitate 
the swift  and efficient movement of goods and materials.  They are versatile,  capable of transporting 
everything  from  small  items  to  large,  heavy  objects,  and  are  essential  in  sectors  ranging  from 
manufacturing to retail. 

For an optimal performance, the belt of the conveyor needs to beat an optimal tension. To determine if the 
belt  of  a  conveyor  must  be  tightened or  loosened to  reach the  optimal  tension,  an  accelerometer  to 
measure  lateral  movements,  an  gyrometer  the  measure  to  measure  angular  movements  and  a 
magnetometer to measure differences in the magnetic field caused by the engine are used. An Embedded  
AI application should analyze the sensor data, and predict if the belt is too loose or too tight.

6.2 State of the Art

6.2.1 Conveyor
For the project a miniature conveyor is provided by a project partner. It has a length of approximately 20 
centimeters  and has  the  sensors  already mounted.  The magnetometer  is  mounted directly  beside  the 
engine, while the accelerometer and the gyrometer are both mounted beside the screw used to adjust the 
tension. Figure 38 displays a sketch of the setup.

Figure 38: Sketch of the hardware setup
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6.2.2 Dataset
The provided dataset contains six categories and 10000 elements per category. Category ‘0’ means loose, 
category ‘5’ means tight  as  shown in  Figure 39.  The optimal  tension of  the conveyor is  reached in 
category ‘3’. Each entry contains 333 samples of all three sensors, in all their axes. Meaning for a single 
entry in the dataset, 2997 sensor values are provided.

6.2.3 Task
The hardware including all the sensors, the embedded software to read out the sensors, and a dataset to 
train a neural network is already provided by project partners. The task is to design, train, convert and use 
a neural network to predict the tension of the belt on an embedded system using a minimalist version of 
the EMSA5, employing only 64KB ITCM, 64KB DTCM and support for RISC-V imc.

6.3 Embedded AI Workflow
In order bring a model to the EMSA5, the Embedded AI Workflow, described in section 2.3.1 was used. 
During the process, multiple models, with different architectures were designed until a model, executable 
on the minimalists version of the EMSA5, was found. The model (ID 3 in Table 12) was then converted 
using the EmmiTranslator and tested on the EMSA5. 

Table 12: Overview of conveyor models

ID Inputs Samples per Input Parameters Float Accuracy Quantized Size Inference Time on 
EMSA5

1 Acc, Gyr, Mag 333 231396 98% 382 KB 33 seconds*

2 Acc, Gyr, Mag 100 74988 94% 136 KB 7 seconds*

3 Acc, Mag 100 18701 91% 26 KB 2 seconds

*Inference time measured on EMSA5 with 256MB memory

For  each  model,  a  graphic  displaying  the  detailed  architecture  can  be  found  in  the  appendix  under 
models/*.

6.3.1 Test model using Live Data
The model is tested using live data recorded directly from the sensors connected to the EMSA5. After 100 
samples from the accelerometer and the magnetometer are recorded, the data is preprocessed by scaling it  
into a range between zero and one. Subsequent to the preprocessing, the inference is performed. 

Figure 39: Overview of categories within 
the conveyor dataset
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6.3.2 Adding support for a Display
The final step is to add support for a display. The interface should show a loose or tight conveyor belt,  
depending on the current classification of the measurements. A seven inch NEXTION NX8048P070 is 
chosen as display. The interface shown by the display is controlled by sending UART commands. The 
interface itself is designed in the software provided by NEXTION. The interface is then stored on the  
controller of the display. Figure 40 shows the structure of the embedded AI application. The FPGA board 
that performs the inference is mounted under the display. The FPGA board on the right is placed for  
demonstration purposes and is not connected to the conveyor.  52

Figure 40: Demo setup of the conveyor application [52]
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7 Conclusion

7.1 Summary
The  aim of  this  master’s  thesis  was  to  extend  the  functionality  of  the  inference-only  embedded  AI  
framework  Emmi.  The  foundational  groundwork  for  this  extension  was  laid  in  section  two,  which 
provided an overview of  the  EMSA5,  Emmi,  quantized neural  networks  and delved into  the  theory 
required to implement new functionality. 

The following section three analyzed the architecture and feature set of the embedded AI framework 
Emmi.  It  stated  opportunities  for  the  frameworks  improvement  and  presented  an  overview  of  the 
functions  planned for  development  during  the  course  of  the  thesis.  Section  four  continued with  the  
implementation of the convolutional and pooling operations, followed by the implementation of the a 
batch normalization layer and the integration of batch normalization folding into the EmmiTranslator. The 
section was closed by describing general improvements made to the framework in order to reduce the  
storage requirements of models, the build system, and the accuracy of quantized neural networks. These 
implemented functionalities were evaluated in section five. An overview of the implemented unit and 
integration tests were given and benchmarks on network size, accuracy and performance were executed. 
Section six presented an embedded AI application example: It predicts the tension of a belt.

7.2 Research Questions
Four research questions were stated in section  1.1.1. Question  Q1, asking for the implementation of a 
batch normalization was answered in section 4.3. The question of why a folding of batch-normaization is 
considered was answered is 3.3.1, and details of the implementation were given in 4.3.3. Questions Q2 
and  Q3 were  both  explored  though  discussions  in  section  3.2.4,  the  resulting  implementations  are 
described in section 4.4. Question Q4 led to a RISC-V simulator called spike, which was used to run the 
Emmi testbench as described in 5.4.

In addition to the research questions,  section  1.1.1 listed secondary points,  two of which were fully 
investigated. S1 was addressed in section 6 and S2 in sections 2.5.1 and 4.1.2.

7.3 Final Outcome
Throughout this thesis, all research questions have been resolved, and the necessary extensions have been 
successfully implemented. In addition, two of the three secondary points were addressed, and several 
optimizations were made to the framework.

Significant  improvements  have been achieved in  the  Emmi Core.  It  now supports  1D convolutional 
layers,  batch  normalization,  concatenation  and  smaller  datatypes,  effectively  reducing  the  memory 
requirements of quantized models. The EmmiTranslator now supports the folding of batch normalization 
layers through the integration of the Python package tf-batchnorm-fold, which has been enhanced to work 
with the full feature-set of Emmi.

Finally, a practical example of embedded AI was presented to demonstrate the real-world applicability of 
Emmi.
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7.4 Perspective
Emmi offers exciting possibilities in the world of embedded AI projects. It has already been used in two 
projects at the Fraunhofer IPMS, leveraging its wide range of functionality. With the upcoming support 
for  Long  short-term  memory  (LSTM)  networks  alongside  a  dedicated  user  interface  for  model 
conversion, the usability and feature set of the framework will be further extended.
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Appendix
The appendix of this thesis is supplied as a digital archive, that includes:

• Demos

• Model illustrations

• Online references

• Source Code
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